机器学习之2-多变量线性回归(Linear Regression with Multiple Variables) 查看原文 【Machine Learning】4 多变量线性回归(Linear Regression with Multiple Variables) 4.1多维特征4.2多变量梯度下降4.3梯度下降实践1-特征缩放4.4梯度下降实践2-学习率 满足wolfe条件,充分下降且
import math; def sum_of_gradient(x, y, thetas): """计算梯度向量,参数分别是x和y轴点坐标数据以及方程参数""" m = len(x); grad0 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) for i in range(m)]) grad1 = 1.0 / m * sum([(thetas[0] + thetas[1] *...
【吴恩达机器学习笔记】004 模型示例:单变量线性回归(Model Representation:Linear Regression with one variable) 一、示例 —— 预测住房价格 如上图所示,图中的数据集(X)表示房屋大小和价格存在的一个关系图。如果有一个人有一套1250平方尺的房子,那他卖多少钱合适? 二、分析 或许我们每个人心中... ...
(2)损失函数和单变量一样,依然计算损失平方和均值 我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为: 求导数后得到: (3)向量化计算 向量化计算可以加快计算速度,怎么转化为向量化计算呢? 在多变量情况下,损失函数可以写为: 对theta求导后得到: (1...
§ 2. 多变量线性回归 Linear Regression with Multiple Variables 1 多特征值(多变量) Multiple Features(Variables) 首先,举例说明了多特征值(多变量)的情况。在下图的例子中,x1,x2,x3,x4x1,x2,x3,x4都是输入的变量,因为变量个数大于一,所以也称为多变量的情况。
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)——房屋面积x。我们希望使用这个特征量来预测房子的价格。我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积(作为预测房屋价格的特征量(...
4 多变量线性回归(Linear Regression with Multiple Variables) 4.1 多特征(Multiple Features) 对于一个要度量的对象,一般来说会有不同维度的多个特征。比如之前的房屋价格预测例子中,除了房屋的面积大小,可能还有房屋的年限、房屋的层数等等其他特征: 这里由于特征不再只有一个,引入一些新的记号 ...
This chapter applies several criteria for choosing predictor variables in a multiple linear regression model. There are several criteria that can be used to select the number of independent variables in a regression model. These criteria are based on the principle of parsimony, using a minimum of ...
Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation),%第一列为sizeofHouse(feet^2),第二列为numberofbedroom,第三列为priceofHouse12104,3,39990021600,3,32990032400,3,3690004
机器学习(三) 多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题 如果有多个特征值 那么这种情况下 假设h表示为 公式可以简化为 两个矩阵相乘 其实就是所有参数和变量相乘再相加 所以矩阵的乘法才会是那样 那么他的代价函数就是 同