1.Linear Regression with Multiple Variables(多变量线性回归) 1.1多维特征(Multiple features) 前面都是单变量的回归模型,通过对模型增加更多的特征,就可以构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn)。 以房价举例,前面在单变量的学习中只是用到了房屋的尺寸作为x来预测房价y,现在
【吴恩达机器学习笔记】004 模型示例:单变量线性回归(Model Representation:Linear Regression with one variable) 一、示例 —— 预测住房价格 如上图所示,图中的数据集(X)表示房屋大小和价格存在的一个关系图。如果有一个人有一套1250平方尺的房子,那他卖多少钱合适? 二、分析 或许我们每个人心中... ...
J_history=np.zeros((num_iters,1))foriterinrange(num_iters):# 对J求导,得到 alpha/m*(WX-Y)*x(i),(3,m)*(m,1)X(m,3)*(3,1)=(m,1)theta=theta-(alpha/m)*(X.T.dot(X.dot(theta)-y))J_history[iter]=computeCost(X,y,theta)returnJ_history,theta iterations=10000#迭代次数 alph...
import math; def sum_of_gradient(x, y, thetas): """计算梯度向量,参数分别是x和y轴点坐标数据以及方程参数""" m = len(x); grad0 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) for i in range(m)]) grad1 = 1.0 / m * sum([(thetas[0] + thetas[1] *...
§ 2. 多变量线性回归 Linear Regression with Multiple Variables 1 多特征值(多变量) Multiple Features(Variables) 首先,举例说明了多特征值(多变量)的情况。在下图的例子中,x1,x2,x3,x4x1,x2,x3,x4都是输入的变量,因为变量个数大于一,所以也称为多变量的情况。
机器学习(三) 多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题 如果有多个特征值 那么这种情况下 假设h表示为 公式可以简化为 两个矩阵相乘 其实就是所有参数和变量相乘再相加 所以矩阵的乘法才会是那样 那么他的代价函数就是 同
This chapter applies several criteria for choosing predictor variables in a multiple linear regression model. There are several criteria that can be used to select the number of independent variables in a regression model. These criteria are based on the principle of parsimony, using a minimum of ...
4 多变量线性回归(Linear Regression with Multiple Variables)4.1 多特征(Multiple Features)4.2 多变量梯度下降(Gradient Descent for Multiple Variables)4.3 梯度下降实践1-特征值缩放(Gradient Descent in Practice I - Feature Scaling)4.4 梯度下降实践2-学习速率(Gradient Descent in Practice II - Learning Rate...
一、Linear Regression 主要分为Linear Regression with One Variable & Linear Regression with Multiple Variables Linear Regression with One Variable 简单地说就是一个自变量一个因变量,且二者的关系近似可以用一条直线去拟合。 例如房价与面积的关系,就可以近似看成单变量线性回归问题 ...
Linear Regression with multiple variables - Gradient descent in practice I: Feature Scaling 摘要: 本文是吴恩达 (Andrew Ng)老师《机器学习》课程,第五章《多变量线性回归》中第30课时《多元梯度下降法实践 I: 特征缩放》的视频原文字幕。为本人在视频学习过程中记录下来并加以修正,使其更加简洁,方便阅读,以便日...