前一章所用的单纯形法是建立在我们知道初始基可行解的基础上的,即我们已知x满足Ax=b,x≥0,但是在一些情况下这样的初始基可行解是比较难找到的。这一节的目的就是帮我们快速找到初始基可行解。 我们先看这几种约束情况: Ax≤b,x≥0且b≥0。这时,我们通过添加松弛变量可以将约束转化为Ax+xs=b,x≥0,xs≥...
的问题为线性规划(Linear Programming)问题。其中,c1x1+c2x2+⋯+cnxn称为目标函数,这是我们需要优化(这里是最小化)的目标;xj,j=1,⋯,n称为决策变量,这是我们需要决策的内容;cj,j=1,⋯,n称为成本系数,这代表着每增加单位数量的xj所需要花费的成本;不等式∑j=1naijxj≥bi,i=1,⋯,m称为约束;由...
喜欢读"Linear Programming and Network Flows"的人也喜欢· ··· Algebraic Geometry and Statistical ... Integer and Combinatorial Optimiz...9.2 Linear Algebra and Geometry 向量微积分、线性代数和微分形式9.8 Time Series Analysis and Its Applic...8.9 Lambda...
Linear Programming and Network Flows, now in its third edition, addresses the problem of minimizing or maximizing a linear function in the presence of linear equality or inequility constraints. This book:* Provides methods for modeling complex problems via effective algorithms on modern computers.* ...
Linear Programming and Network Flows, now in its third edition, addresses the problem of minimizing or maximizing a linear function in the presence of linear equality or inequility constraints. This book: * Provides methods for modeling complex problems via effective algorithms on modern computers. ...
研究点推荐 Linear programming network flows 引用走势 2010 被引量:37 站内活动 0 关于我们 百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。了解更多>>...
线性LINEAR PROGRAMMING
《线性规划与网络流》(WILEY, 1977)是一本探讨如何通过现代计算机上有效的算法来建模复杂问题的书。作者巴拉亚(Bazaraa)在书中提供了一种方法,通过这种方法可以有效地解决优化问题。书中详细介绍了优化问题的通用理论和特性,以及有效解算法。同时,书中也探索了线性规划(LP)和网络流,并采用了多项式时间算法以及简单性...
This Fourth Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with a substantial treatment of linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Read...
This Fourth Edition introduces the latest theory and applications in optimization. It emphasizes constrained optimization, beginning with a substantial treatment of linear programming and then proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Read...