Sheldon Axler作者 作者简介· ··· Sheldon Axler is Dean of the College of Science & Engineering at San Francisco State University. He has authored many well-received books including Precalculus: A Prelude to Calculus, Algebra & Trigonometry, College Algebra, A Glimpse at Hilbert Space Opera...
Sheldon Axler 作者 作者简介 ··· Sheldon Axler is Dean of the College of Science & Engineering at San Francisco State University. He has authored many well-received books including Precalculus: A Prelude to Calculus, Algebra & Trigonometry, College Algebra, A Glimpse at Hilbert Space Operato...
Linear Algebra Done Right的创作者 ··· Sheldon Axler 作者 作者简介 ··· Sheldonc Axler 1975年毕业于加州大学伯克利分校,现为旧金山州立大学理工学院院长。 《美国数学月刊》编委,The Mathematical Intelligencer主编,同时还是Springer多个系列丛书的主编。 原文摘录 ··· ( 全部 ) You cannot expect ...
Linear Algebra Done Right的创作者· ··· Sheldon Axler作者 作者简介· ··· Sheldonc Axler 1975年毕业于加州大学伯克利分校,现为旧金山州立大学理工学院院长。 《美国数学月刊》编委,The Mathematical Intelligencer主编,同时还是Springer多个系列丛书的主编。 原文摘录 ...
书名:Linear Algebra Done Right (3rd Edition) 语言:英文 作者:Sheldon Axler ISSN: 0172--6056(纸质);2197-5604(电子) ISBN: 978-3-319-11079-0(纸质);978-3-319-11080-6(电子) 出版社:Springer 出版年份:2015 参考链接 习题答案链接(英文):Solution Manual 勘误(英文):Errata 本书目录(译) 注:点击链...
Linear Algebra Done Right (Undergraduate Texts in Mathematics) by Axler, Sheldon 英文书籍.pdf-2022-04-06-17-49-51-537 下载积分: 5000 内容提示: 文档格式:PPTX | 页数:352 | 浏览次数:117 | 上传日期:2022-04-10 17:55:51 | 文档星级: ...
Linear Algebra Done Right By Sheldon Axlerdoi:info:doi/10.4169/amer.math.monthly.123.6.621Hogben, LeslieHunacek, MarkAmerican Mathematical Monthly
Sheldon Axler is Dean of the College of Science & Engineering at San Francisco State University. He has authored many well-received books including Precalculus: A Prelude to Calculus, Algebra & Trigonometry, College Algebra, A Glimpse at Hilbert Space Operators, Harmonic Function Theory, and Holomo...
线性代数是针对有限维向量空间上的线性映射的研究。在本章中,我们将定义向量空间并讨论它们的基本性质。在线性代数中,如果将复数与实数一起研究,就会出现更好的定理和更深刻的见解。因此,我们将从介绍复数及其基本性质开始。 我们将平面和普通空间的例子推广到 Rn 和Cn ,然后我们将推广到向量空间的概念。正如我们将...
The matrix is denoted by M(T):=A . If we use different bases, for sure we end up with a different matrix A′ . M(T+S) is the matrix of linear map S+T, αM(T) is the matrix of αT , M(ST) is the matrix of ST . Some results from the exercise are very interesting. ...