∵x→0时,sin2x~x2,1-cos4x~(4x)22=8x2∴limx→0(1sin2x?cos2xx2)=limx→0x2?sin2xcos2xx2sin2x=limx→0x2?14sin22xx4=limx→02x?12sin4x4x3=limx→01?cos4x6x2=limx→012(4x)26x2=43.
∵x→0时,sin2x~x2,1-cos4x~(4x)22=8x2∴limx→0(1sin2x−cos2xx2)=limx→0x2−sin2xcos2xx2sin2x=limx→0x2−14sin22xx4=limx→02x−12sin4x4x3=limx→01−cos4x6x2=limx→012(4x)26x2=43. 结果三 题目 求limx→0(1sin2x−cos2xx2). 答案 ∵x→0时,sin 2x~x 2...
简单计算一下即可,答案如图所示
2,用Limx趋于0 sinx/x=1 而cosx趋于1
元旦快乐!Happy New Year !1、本题是无穷大减无穷大型不定式,但可以转化为无穷小/无穷小型不定式;2、转化为无穷小/无穷小型不定式后,就可以有很多种解答方法;3、下面的解答方法是先化简,然后连续三次使用罗毕达求导法则得出答案。具体解答如下,若看不清楚,请点击放大:
原式=lim(x→0) (2sinxcosx*cosx)/(cos2x*sinx)=lim(x→0) 2(cosx)^2/cos2x =2*1/1 =2 望采纳
lim_(x rarr2)(sqrt(2x+5)-3)/(x-2) View Solution lim_(x rarr2)(x-2)/(sqrt(x^(2)-4)+sqrt(x-2)) View Solution limx→2x−2√x−√2 View Solution limx→2(√1−cos{2(x−2)}x−2) View Solution Exams IIT JEE ...
结果1 题目 x2-sin2 xcos2x【 lim_(x→0)(1/(sin^2x)-(cos^2x)/(x^2))=lim_(x→0)(x^2-sin^2xcos^2x)/(x^2sin^2x))= lim0x2sin2x lim_(x→0)(x^2-1/4sin^22x)/(x^4)=lim_(x→0)(2x-cos2xsin2x)/(4x^2) lim_(x→∞)(x-1/4sinx)/(2x^3)=lim...
View Solution find the the value oflimx→0e3x−12xandlimx→0log(1+4x)3x View Solution Evaluate:limx→0e2x−1sin3x View Solution Exams IIT JEE NEET UP Board Bihar Board CBSE Free Textbook Solutions KC Sinha Solutions for Maths ...
原式=lim(x→0) (2sinxcosx*cosx)/(cos2x*sinx)=lim(x→0) 2(cosx)^2/cos2x =2*1/1 =2 望采纳