那么书接上回,本篇文章我们将使用LightGBM模型对真实的市场收益进行预测,如果你对Light GBM尚不熟悉,原理可参照link,基于python的使用案例可参考link,特别说明本文代码来自于Kaggle竞赛的第三名解决方案,我对部分代码进行了解读。 数据处理 需要引入的头文件,文件路径和一些基本参数设置。注意lag表示时间周期,例如以60为...
一般情况下 LightGBM 模型都会使用一些lag的特征来预测未来的结果,这样做一般情况下能够取得很好的效果。本文介绍一种新的思路:使用 Prophet 从时间序列中提取新特征,然后使用LightGBM 进行训练,可以得到更好的效果。Prophet 模型的实际预测、置信区间的上限和下限、每日和每周的季节性和趋势等都可以作为我们的新特征。对...
LightGBM相较于xgboost在训练速度方面有明显的优势。这是因为LightGBM使用了一些高效的算法和数据结构,比如直方图算法和基于梯度单边采样算法(GOSS),这些算法使得LightGBM在训练大规模数据集时速度更快。 内存消耗 由于LightGBM使用了一些高效的算法和数据结构,因此其内存消耗相对较小。而xgboost在处理大规模数据集时可能会需...
而LightGBM 使用的是一种基于梯度单边采样(Gradient-based One-Side Sampling,GOSS)和直方图算法的分裂点选择方法,它会先对数据进行预排序,然后将数据划分成若干个直方图,每个直方图包含多个数据点。在寻找最优分裂点时,LightGBM 只会在直方图中选取一个代表点(即直方图中的最大梯度值)进行计算,这样大大降低了计算量。
当我们考虑时间序列的增强树时,通常会想到 M5 比赛,其中前十名中有很大一部分使用了 LightGBM。 但是当在单变量情况下使用增强树时,由于没有大量的外生特征可以利用,它的性能非常的糟糕。 首先需要明确的是M4 …
LightGBM相较于xgboost在训练速度方面有明显的优势。这是因为LightGBM使用了一些高效的算法和数据结构,比如直方图算法和基于梯度单边采样算法(GOSS),这些算法使得LightGBM在训练大规模数据集时速度更快。 内存消耗 由于LightGBM使用了一些高效的算法和数据结构,因此其内存消耗相对较小。而xgboost在处理大规模数据集时可能会需...
LightGBM 在训练速度方面具有显著优势,这是因为它使用了 GOSS 和直方图算法,减少了计算量和内存消耗。而 xgboost 的计算速度相对较慢,但是在处理较小的数据集时表现良好。 电力能源消耗预测 在当今世界,能源是主要的讨论点之一,能够准确预测能源消费需求是任何电力公司的关键,所以我们这里以能源预测为例,对这两个目前...
LightGBM是最近最常见的一类算法,在kaggle比赛中经常被用来做预测和回归,由于性能比较好有着“倚天剑”的称号,而XGBoost则被称为屠龙刀。今天,我们就抛砖引玉,做一个简单的教程,如何用这倚天剑和屠龙刀来预测时间序列。参数没有调到最佳的预测效果,根据不同的数据集,同学们可以自己调参。
XGBoost和LightGBM时间序列预测对比 GBoost和LightGBM都是目前非常流行的基于决策树的机器学习模型,它们都有着高效的性能表现,但是在某些情况下,它们也有着不同的特点。 XGBoost和LightGBM简单对比 训练速度 LightGBM相较于xgboost在训练速度方面有明显的优势。这是因为LightGBM使用了一些高效的算法和数据结构,比如直方图算法...
LazyProphet的核心思想是利用LightGBM来拟合时间序列数据中的趋势和季节性。它主要包括以下几个步骤: 数据预处理:LazyProphet首先会对输入的时间序列数据进行预处理,包括缺失值填充、异常值处理等。 特征工程:为了捕捉时间序列中的趋势和季节性,LazyProphet会生成一系列的时间相关特征,如时间戳、星期几、月份、季节性指数...