This volume contains chapters 4 to 6 of the book on Lie Groups and Lie Algebras. It is devoted to root systems, Coxeter groups and Tits systems, which occur in the study of analytic or algebraic Lie groups. It contains the following chapters: 4. Coxeter Groups and Tits Systems, 5. ...
《海外直订Lie Groups and Lie Algebras: Chapters 4-6 李群与李代数:第4-6章》,作者:海外直订Lie Groups and Lie Algebras: Chapters 4-6 李群与李代数:第4-6章Bourbaki 著,出版社:Springer,ISBN:9783540691716。
Chapter 4 introduces abstract groups and Lie groups, which are a formalization of the notion of a physical transformation. The chapter begins with the definition of an abstract group along with examples, then specializes to a discussion of the groups that arise most often in physics, particularly ...
图书 > 进口原版 > Science(科学) > 现货 李群和李代数4-6章 Lie Groups and Lie Algebras : Chapters 4-6澜瑞外文Lanree图书专营店 关注店铺 评分详细 商品评价: 5.0 高 物流履约: 4.5 中 售后服务: 4.9 高 400-610-1360转501607 手机下单 进店逛逛 | 关注店铺 ...
Structure of Lie Groups and Lie Algebras Editors: A L Onishchik E. B. Vinberg Copyright: 1994 Available Renditions Hard cover Soft cover Lie Groups and Lie Algebras II Discrete Subgroups of Lie Groups and Cohomologies of Lie Groups and Lie Algebras ...
作者:V.S.Varadarajan 出版社:不详 出版时间:1974-01-00 开本:32开 印刷时间:1974-01-00 版次:1 ,购买李群,李代数及其表示(英文版)Lie Groups, Lie Algebras and TheirRepresentations等文学相关商品,欢迎您到孔夫子旧书网
海外直订Lie Groups and Lie Algebras: Chapters 1-3 李群与李代数:第1-3章 作者:Bourbaki, N.出版社:Springer出版时间:1998年08月 手机专享价 ¥ 当当价 降价通知 ¥664.00 配送至 广东佛山市 至 北京市东城区 服务 由“中华商务进口图书旗舰店”发货,并提供售后服务。
Lie Groups and Lie Algebras. Chapters 1–3 We restrict ourselves to the study of linear Lie groups, that is, to closed subgroups of GL(n,ℝ), for an integer n, in other words, to groups of real ma... N Bourbaki - Springer Publishing Company, Incorporated 被引量: 832发表: 2002年...
Lie Groups and Lie Algebras 作者:Komrakov, B. P.; Krasil'shchik, I. S.; Litvinov, G. L. 出版年:1998-3 页数:454 定价:$ 157.07 ISBN:9780792349167 豆瓣评分 目前无人评价 评价: 写笔记 写书评 加入购书单 分享到 + 加入购书单
In this crucial lecture we introduce the definition of the Lie algebra associated to a Lie group and its relation to that group. All three sections are logically necessary for what follows; §8.1 is essential. We use here a little more manifold theory:..