今天分享一篇ECCV2022文章,由DeepLab系列作者Liang-Chieh Chen团队提出,将Transformer中的交叉注意力用聚类实现,在COCO和Cityscapes验证集上实现全景分割SOTA结果。文章为《k-means 掩码Transformer》。 文章链接:https://arxiv.org/abs/2207.04044 项目链接:https://github.com/google-research/deeplab2 Transformer在视觉任...
Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen,Liang-Chieh Chen Technical report [preprint (arxiv: 2411.00776)] [project website] [code] MaskBit: Embedding-free Image Generation via Bit Tokens Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers,Liang-Chieh Chen ...
52 算法 所在组织 Google Research 论文 模型 工具 数据集 2022/10/05 02:00 参与者 +10 MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models This paper presents MOAT, a family of neural networks that build on top of MObile convolution (i.e., inverted residual blocks) an...
BLG:Liangchen、Monki、Heru、Baiyu、Xiaoxia 教练:Chieh AL:Flandre、Tarzan、Shanks、Hope、Kael 教练:Tabe、Xiaobai #LPL#英雄联盟
DeepLabv2 (ResNet-101) employs (1) re-purposed ResNet-101 for semantic segmentation by atrous convolution, (2) multi-scale inputs with max-pooling to merge the results from all scales, and (3) atrous spatial pyramid pooling. The model has been pretrained on MS-COCO dataset. ...
DeepLabv2 (VGG-16) employs (1) re-purposed VGG-16 for semantic segmentation by atrous convolution, (2) multi-scale inputs with max-pooling to merge the results from all scales, and (3) atrous spatial pyramid pooling. Performance After DenseCRF, the model yields72.6%performance on PASCAL ...