在2014年 ILSVRC的中,谷歌发布了自己的网络 GoogLeNet它的性能比 VGGNet好一点, GoogLeNet的性能是6.7%,而 VGGNet的性能是7.3%(这里性能指的是误差率)。GoogLeNet最吸引人之处在于它的运行速度非常快,主要原因是由于它引入了一个叫inception模块的新概念,从而将参数数量减少到500个,是 AlexNet的1/12。同时它的内存...
2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名。VGGNet可以看成是加深版本的AlexNet,都是由卷积层、全连接层两大部分构成。 VGG16相比Alex...
Deep Learning一路走来,大家也慢慢意识到模型本身结构是Deep Learning研究的重中之重,而本文回顾的LeNet、AlexNet、GoogLeNet、VGG、ResNet又是经典中的经典。 随着2012年AlexNet的一举成名,CNN成了计算机视觉应用中的不二选择。目前,CNN又有了很多其他花样,比如R-CNN系列,详情敬请期待我爱机器学习网站(http://52ml....
AlexNet1是2012年ImageNet竞赛的冠军模型,其作者是神经网络领域三巨头之一的Hinton和他的学生Alex Krizhevsky。 AlexNet以极大的优势领先2012年ImageNet竞赛的第二名,也因此给当时的学术界和工业界带来了很大的冲击。此后,更多更深的神经网络相继被提出,比如优秀的VGG,GoogLeNet,ResNet等。 2.1 AlexNet模型结构 AlexNet...
这一篇就介绍下几个经典的卷积神经网络结构:LeNet,AlexNet,GoogLeNet,VGG以及ResNet。它们在ImageNet大规模视觉识别竞赛(ILSVRC)上都取得过惊人的战绩,其中ResNet的表现甚至都超过了人类的水平。了解这些经典的卷积神经网络结构以及其发展过程,对于我们设计适合自己任务的网络具有非常大的参考意义。LeNet-5:LeNet-...
2. AlexNet: 由于图片数据集的扩大和硬件设备的发展,更深层更复杂的神经网络模型被使用,其中代表为AlexNet,与相对较小的LeNet相比,AlexNet包含8层变换,其中有五层卷积和两层全连接隐含层,以及一个输出层。 def AlexNet(): """ 对leNet的一个扩展,得益于数据集和硬件资源的发展 ...
利用pytorch实现AlexNet网络,由于当时,GPU的计算能力不强,因此Alex采用了2个GPU并行来计算,如今的GPU计算能力,完全可以替代。 import torch.nn as nn import torch class AlexNet(nn.Module): def __init__(self,num_classes): super(AlexNet,self).__init__() self.features = nn.Sequential( nn.Conv2d(3...
AlexNet总结: 输入尺寸:227*227*3 卷积层:5个 降采样层(池化层):3个 全连接层:2个 输出层:1个。1000个类别 四、ZFNet 五、VGG-16网络 VGGNet是牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发的深度卷积神经网络。
Deep Learning一路走来,大家也慢慢意识到模型本身结构是Deep Learning研究的重中之重,而本文回顾的LeNet、AlexNet、GoogLeNet、VGG、ResNet又是经典中的经典。 随着2012年AlexNet的一举成名,CNN成了计算机视觉应用中的不二选择。目前,CNN又有了很多其他花样,比如R-CNN系列,详情敬请期待我爱机器学习网站(52ml.net)的#...
AlexNet网络结构 AlexNet网络详细结构 2.3 VGG VGG是Oxford的Visual Geometry Group的组提出的(大家应该能看出VGG名字的由来了)。VGG模型是2014年ILSVRC竞赛的第二名,第一名是GoogLeNet。但是VGG模型在多个迁移学习任务中的表现要优于googLeNet。而且,从图像中提取CNN特征,VGG模型是首选算法。它的缺点在于,参数量有140M之...