虽然利用theano可以方便的实现LeNet5,但是不利于学习和理解卷积神经网络,所以最后会自己动手用python实现一个简单的LeNet5,并尝试利用python的PyCUDA库进行加速。 首先看LeNet5的结构,如下图所示(来自Yann LeCun的论文)。 对于卷积层,其计算公式为 其中K表示由L层到L+1层要产生的feature的数量,表示“卷积核”,表...
LeNet-5是一个较简单的卷积神经网络。下图显示了其结构:输入的二维图像,先经过两次卷积层到池化层,再经过全连接层,最后使用softmax分类作为输出层。 1.卷积层 上图给出一个卷积计算过程的示例图。 输入图像大小为H=5,W=5,D=3,即5×5大小的3通道(RGB,也称作深度)彩色图像。这个示例图中包含两(用K表示)组...
分享:LeNet-5 卷积神经网络结构图 LeNet-5是Yann LeCun在1998年设计的用于手写数字识别的卷积神经网络,当年美国大多数银行就是用它来识别支票上面的手写数字的,它是早期卷积神经网络中最有代表性的实验系统之一。可以说,LeNet-5就相当于编程语言入门中的“Hello world!”。 但是很奇怪的,原本设计之初的目的是用来...
连接数:(5*5+1)*6*28*28=122304 详细说明:对输入图像进行第一次卷积运算(使用 6 个大小为 5*5 的卷积核),得到6个C1特征图(6个大小为28*28的 feature maps, 32-5+1=28)。我们再来看看需要多少个参数,卷积核的大小为5*5,总共就有6*(5*5+1)=156个参数,其中+1是表示一个核有一个bias。对于卷积...
子采样过程:邻域四个像素求和变为一个像素,然后通过标量W加权,再增加偏置b,然后通过一个sigmoid激活函数,产生一个缩小四倍的特征映射图Sx+1 二. 理解用卷积代替全连接 三. 通过基本的神经元模型理解可训练参数与连接数 四. 各层参数详解 LeNet-5共有7层,不包含输入,每层都包含可训练参数;每个层有多个Feature...
图1. LeNet-5 网络结构 一、LeNet-5 卷积神经网络的开山之作,麻雀虽小五脏俱全,卷积层、池化层、全链接层一直沿用至今。 这个网络结构非常简单,如图1所示。 层数很浅,并且kernel大小单一,C1、C3、C5三个卷积层使用的kernel大小全部都是5×5,不过在我个人看来,这个kernel的大小是经过了无数次实验得来的最优结...