Leftover hash lemma 的名字来自 Impagliazzo-Zuckerman (1989):https://www.cs.utexas.edu/~diz/Sub...
所以left hash lemma就提供了一个privacy amplification的方法,即便攻击者知道了这t个bit,User依然可以产生一个长度约为n-t bit的新的key,而保证攻击者对这个新key一无所知。也就是说,left hash lemma实现了这样一个功能,从一个平均分布的随机变量X中提取了H∞(X)个bit,使得了解部分X信息的攻击者对提取出来的...
内容提示: Leftover Hash Lemma, RevisitedBoaz Barak∗Yevgeniy Dodis † Hugo Krawczyk ‡ Olivier Pereira §Krzysztof Pietrzak ¶ Francois-Xavier Standaert k Yu Yu ∗∗September 3, 2011AbstractThe famous Leftover Hash Lemma (LHL) states that (almost) universal hash functions aregood ...
These will be required to finish the proof for the Leftover Hash Lemma. Definition 1 H∞(X) = log (maxx Pr [X = x]) Definition 2 A function Ext : U × S → V is a (k, ε) extractor if for all random variables X with H∞(X) ≥ k, we have: SD [(S,Ext(X,S)) , ...
The leftover hash-lemma tells us that we can produce a key of almost n t bits, over which the adversary has almost no knowledge. Since the adversary knows all but n t bits, this is almost optimal. 展开 出版时间: 2010-09-04
The famous Leftover Hash Lemma (LHL) states that (almost) universal hash functions are good randomness extractors. Despite its numerous applications, LHL-based extractors suffer from the following two drawbacks: Large Entropy Loss: to extract v bits from distribution X of min-entropy m which are...
The famous Leftover Hash Lemma (LHL) states that (almost) universal hash functions are good randomness extractors. Despite its numerous applications, LHL-based extractors suffer from the following two limitations:...
内容提示: Leftover Hash Lemma, RevisitedBoaz Barak 1 , Yevgeniy Dodis 2 , Hugo Krawczyk 3 , Olivier Pereira 4 ,Krzysztof Pietrzak 5 , Fran¸ cois-Xavier Standaert 4 , and Yu Yu 61Microsoft Research New Englandboaz@microsoft.com2New York Universitydodis@cs.nyu.edu3IBM Researchhugo@ee....
These will be required to finish the proof for the Leftover Hash Lemma. Definition 1... D Wichs,B Maiti 被引量: 0发表: 2015年 Leftover Hashing Against Quantum Side Information The Leftover Hash Lemma states that the output of a two-universal hash function applied to an input with ...
The famous Leftover Hash Lemma (LHL) states that (almost) universal hash functions are good randomness extractors. Despite its numerous applications, LHL-based extractors suffer from the following two limitations:Quite surprisingly, we show that both limitations of the LHL — large entropy loss and...