sklearn.model_selection.learning_curve(estimator, X, y, groups=None, train_sizes=array([0.1, 0.33, 0.55, 0.78, 1. ]), cv=’warn’, scoring=None, exploit_incremental_learning=False, n_jobs=None, pre_dispatch=’all’, verbose=0, shuffle=False, random_state=None, error_score=’raise-de...
二、函数格式 sklearn.model_selection.learning_curve(estimator, X, y, groups=None, train_sizes=array([0.1, 0.33, 0.55, 0.78, 1. ]), cv=’warn’, scoring=None, exploit_incremental_learning=False, n_jobs=None, pre_dispatch=’all’, verbose=0, shuffle=False, random_state=None, error_sco...
sklearn.model_selection.learning_curve(estimator, X, y, groups=None, train_sizes=array([0.1, 0.33, 0.55, 0.78, 1. ]), cv=’warn’, scoring=None, exploit_incremental_learning=False, n_jobs=None, pre_dispatch=’all’, verbose=0, shuffle=False, random_state=None, error_score=’raise-de...
from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import learning_curve def plot_learning_curve(estimator, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): f, ax1 = plt.subplots(1,1, figsize=(10,6), sharey=True) if ylim is ...
from sklearn.svm import SVC #Support Vector Classifier import matplotlib.pyplot as plt #可视化模块 import numpy as np # 加载digits数据集,其包含的是手写体的数字,从0到9。 #数据集总共有1797个样本,每个样本由64个特征组成,分别为其手写体对应的8×8像素表示,每个特征取值0~16。
sklearn.model_selection.learning_curve学习曲线 这个函数的作用为:对于不同大小的训练集,确定交叉验证训练和测试的分数。一个交叉验证发生器将整个数据集分割k次,分割成训练集和测试集。不同大小的训练集的子集将会被用来训练评估器并且对于每一个大小的训练子集都会产生一个分数,然后测试集的分数也会计算。然后,...
from sklearn.learning_curve import learning_curve 调用格式: learning_curve(estimator, X, y, train_sizes=array([0.1, 0.325, 0.55, 0.775, 1. ]), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch='all', verbose=0) ...
使用sklearn.model_selection.learning_curve绘制学习曲线,并判断模型学习情况(欠拟合/过拟合),程序员大本营,技术文章内容聚合第一站。
sklearn.model_selection.learning_curve 本文是对scikit-learn.org上函数说明<learning_curve>一文的翻译。 包括其引用的用户手册-learning_curve 函数签名Signature: 代码语言:javascript 复制 learning_curve(estimator,X,y,*,groups=None,train_sizes=array([0.1,0.325,0.55,0.775,1.]),cv=None,scoring=None,...
from sklearn.model_selection import learning_curve 这个函数的调用格式是: learning_curve(estimator, X, y, train_sizes=array([ 0.1 , 0.325, 0.55 , 0.775, 1. ]), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch='all', verbose=0) ...