Learning Algorithms for Active Learning Philip Bachman, Alessandro Sordoni, Adam Trischler 34th International Conference on Machine Learning (ICML 2017)|August 2017 Download BibTex We introduce a model that learns active learning algorithms via metalearning. For a distribution of related tasks, our model...
(1)匹配网络(Matching Nets)[Matching networks for one shot learning]及其变体[Low data drug discovery with one-shot learning、Learning algorithms for active learning、Structured set matching networks for one-shot part labeling]:Matching Nets [Matching networks for one shot learning] meta-learning不同的...
文献[2]“Survey on active learning algorithms”是一篇幅较短的中文论文,主要围绕主动学习的基本思想和截至2012年最新的研究成果,并对相关算法进行分析,总结了有待进一步研究的问题,包括:1)结合非监督学习算法,取代专家标注的环节;2)维度灾难:在预处理阶段寻找高效的降维方法,减少主动查询过程的复杂度。 文献[3]“...
第一种是流式的主动学习(Sequential Active Learning),第二种是离线批量的主动学习(Pool-based Active...
对于三个Active-Learning Algorithms的描述 1. Algorithm SIMPLE 在第t次试验中,the querying function of SIMPLE使用当前的分类器 来选择一个未标注样本,这个未标注样本离当前这个分类器的决策面最近。 直观认识上,这个所选择的未标注样本是对当前分类器来说最不确定的那个样本。
Learning is always considered an important aspect of intelligence. Machine learning has grown into one of the most active fields in AI, and it gives computers the ability to work without being explicitly programmed with problem-specific skills. Learning algorithms have been used in many applications...
主动学习(Active Learning) 概述、策略和不确定性度量 代码语言:javascript 复制 来源:DeepHubIMBA本文约2400字,建议阅读9分钟主动学习是解决标注数据问题的一个方向,并且是一个非常好的方向。 主动学习是指对需要标记的数据进行优先排序的过程,这样可以确定哪些数据对训练监督模型产生最大的影响。
参考论文:Survey on active learning algorithms. Computer Engineering and Applications 主动学习算法作为构造有效训练集的方法,其目标是通过迭代抽样,寻找有利于提升分类效果的样本,进而减少分类训练集的大小,在有限的时间和资源的前提下,提高分类算法的效率。主动学习已成为模式识别、机器学习和数据挖掘领域的研究热点问题...
Active learning using on-line algorithms - Mesterharm, Pazzani - 2011Mesterharm C, Pazzani MJ (2011) Active learning using on-line algorithms. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 850-858...
温文:主动学习active learning(三)——特征空间覆盖(coreset, bilevel coreset, bayesian coreset)74 ...