Spine-Leaf体系架构是由Spine和Leaf这两个交换层组成的数据中心网络拓扑结构。Leaf层由访问交换机组成,汇聚来自服务器的流量,并直接连接到Spine或网络核心。Spine交换机在全网格拓扑中互连所有Leaf交换机。上图中,绿色节点代表交换机,灰色节点代表服务器。在绿色节点中,最上面的是Spine节点,下面是Leaf节点。 Spine-Leaf...
一个简单的两层Clos网络 Spine-Leaf体系架构是由Spine和Leaf这两个交换层组成的数据中心网络拓扑结构。Leaf层由访问交换机组成,汇聚来自服务器的流量,并直接连接到Spine或网络核心。Spine交换机在全网格拓扑中互连所有Leaf交换机。上图中,绿色节点代表交换机,灰色节点代表服务器。在绿色节点中,最上面的是Spine节点...
针对于此,目前主流的设计是在数据中心中构建Leaf-Spine的网络架构。相比于3-Tier, Leaf-Spine实现了层次的扁平化,Leaf负责所有的接入,Spine只负责在Leaf间进行高速传输,网络中任意两个服务器都是Leaf-Spine-Leaf三跳可达的。Leaf和Spine间是Full-Mesh的,即两个Leaf间可以通过任意一个Spine进行中继,Leaf可以将不同...
脊层(Spine layer) - 通常由至少两个三层高吞吐量交换机组成(两个用于冗余目的) 叶层(Leaf layer) - 通常由 N 个功能丰富的三层交换机组成,其中 N 可以是任意数字(通常是偶数,也是为了冗余)。 Clos 网络以及叶脊架构的主要特征是所有Leaf都连接到所有Spine,并且Leaf之间(通常)没有直接连接。 图3:叶脊架构 基...
Spine-Leaf 网络架构,也称为分布式核心网络,由于这种网络架构来源于交换机内部的 Switch Fabric,因此也被称为 Fabric 网络架构,同属于 CLOS 网络模型。事实已经证明,Spine-Leaf 网络架构可以提供高带宽、低延迟、非阻塞的服务器到服务器连接。 前面说过 CLOS 网络是三级交换架构,而 Leaf Spine 却只有两层,这是因为:...
Spine+Leaf两层设备的扁平化网络架构来源于CLOS网络,CLOS网络以贝尔实验室的研究人员Charles Clos命名,他在1952年提出了这个模型,作为克服电话网络中使用的机电开关的性能和成本相关挑战的一种方法。Clos用数学理论来证明,如果交换机按层次结构组织,在交换阵列(现在称为结构)中实现非阻塞性能是可行的,主要是通过组网来形...
Spine-Leaf 网络架构,也称为分布式核心网络,由于这种网络架构来源于交换机内部的 Switch Fabric,因此也被称为 Fabric 网络架构,同属于 CLOS 网络模型。事实已经证明,Spine-Leaf 网络架构可以提供高带宽、低延迟、非阻塞的服务器到服务器连接。 前面说过 CLOS 网络是三级交换架构,而 Leaf Spine 却只有两层,这是因为...
leaf-spine拓扑网络结构主要为解决数据中心内流量的快速增长和数据中心规模的不断扩大,满足传统的三层网络拓扑结构不能满足的数据中心内部高速互连的需求。 leaf-spine二层架构相比于传统三层架构的优势 节省资源。 传统的三层结构有提供用户接入网络的接入层,以及将数据进行汇总的汇聚层和进行大部分的数据梳理的核心层;而...
Leaf/Spine网络架构下,各节点都是具备L3功能的交换机,搭建起的是一个全三层的IP Fabric。 IP这种协议在设计之初就充分地考虑了环路规避、多路径转发、高可靠、多路径等因素,无需再引入STP或配置更为复杂的堆叠和MC-LAG——结合BGP路由和ECMP的负载平衡设计,园区网络中所有的物理线路理论上来说都可被充分利用,在不...
于是乎,网络工程师们提出了“Spine-Leaf网络架构”,也就是我们今天的主角——叶脊网络(有时候也被称为脊叶网络)。Spine的中文意思是脊柱,Leaf是叶子。 叶脊网络架构,和胖树结构一样,同属于CLOS网络模型。 相比于传统网络的三层架构,叶脊网络进行了扁平化,变成了两层架构。如下图所示: ...