Machine Learning 2 . Logistic Regression and LDASchmidtthieme, Lars
主成分分析(PCA)与LDA有着非常近似的意思,LDA的输入数据是带标签的,而PCA的输入数据是不带标签的,所以PCA是一种unsupervised learning。LDA通常来说是作为一个独立的算法存在,给定了训练数据后,将会得到一系列的判别函数(discriminate function),之后对于新的输入,就可以进行预测了。而PCA更像是一个预处理的方法,它...
1 引言 机器学习(Machine Learning)是人工智能(AI)的重要组成部分,目前已广泛应用于数据挖掘、自然语言处理、信用卡欺诈检测、证券市场分析等领域。量化投资作为机器学习在投资领域内最典型的应用之一,已经越来越广泛的出现在我们的视野中。 机器学习可简单理解为利用统计模型或算法拟合样本数据并进行预测,其模型算法根据...
from sklearn.datasets.samples_generatorimportmake_classification defLDA(X,y):X1=np.array([X[i]foriinrange(len(X))ify[i]==0])X2=np.array([X[i]foriinrange(len(X))ify[i]==1])len1=len(X1)len2=len(X2)# 求均值向量u1,u2 miu1=np.mean(X1,axis=0)miu2=np.mean(X2,axis=0)#...
更多关于PCA的内容,可参考 Implementing a Principal Component Analysis (PCA) inPythonstep by step。 一言蔽之,LDA将特征空间(数据集中的多维样本)投影到一个维度更小的 k 维子空间中( k≤n−1),同时保持区分类别的信息。 通常情况下,降维不仅降低了分类任务的计算量,还能减小参数估计的误差,从而避免过拟合...
LDA是基于贝叶斯模型的,涉及到贝叶斯模型离不开“先验分布”,“数据(似然)”和"后验分布"三块。在朴素贝叶斯算法原理小结中我们也已经讲到了这套贝叶斯理论。在贝叶斯学派这里: 先验分布 + 数据(似然)= 后验分布 这点其实很好理解,因为这符合我们人的思维方式,比如你对好人和坏人的认知,先验分布为:100个好人和10...
Machine Learning --- GMM & QDA\LDA & EM algorithm 一、单高斯模型GSM(多元正态分布MVN) 当特征为2D时: 马氏距离=翻转坐标系下的欧式距离: 高斯分布证明(极大熵): [例]拉格朗日乘子法对q求导: 服从指数分布族: 证毕。 二、高斯混合模型GMM(多个单高斯的线性叠加,可逼近任意分布,每个高斯是一个聚类中心...
'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', ...
图1.1 形象化表达LDA2. LDA2.1 Theory of LDAIn this section, the background, principle and ...
在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结。 1. 对scikit-learn中LDA类概述 在scikit-learn中, LDA类是sklearn.discriminant_analysis.LinearDiscriminantAnalysis。那既可以用于分类又可以用于降维。当然,应用场景最多的还是降维。和PCA类似,LDA降维...