在进行实操之前,小果想为大家简单的介绍一下这两种算法的原理,SVM-RFE(support vector machine - recursive feature elimination)是基于支持向量机的机器学习方法, 通过删减svm产生的特征向量来寻找最佳变量;LASSO回归(logistic regression)也是机器学习的方法之一,通过寻找分类错误最小时的λ来确定变量,主要用于筛选特征变量...
1.何为LASSO回归和SVM-RFE算法? 在进行实操之前,小果想为大家简单的介绍一下这两种算法的原理,SVM-RFE(support vector machine - recursive feature elimination)是基于支持向量机的机器学习方法, 通过删减svm产生的特征向量来寻找最佳变量;LASSO回归(logistic regression)也是机器学习的方法之一,通过寻找分类错误最小时的...
指定一个外部的学习算法,比如SVM之类的。通过该算法计算所有子集的validation error。选择error最小的那个子集作为所挑选的特征。 from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_iris rf = RandomForestClassifier() iris=load_iris()...
采用两种不同的机器学习算法(LASSO和SVM-RFE),最终确定7个标记基因。基于上述7个标记基因构建Logistic回归模型,ROC曲线显示,7个标记基因回归模型AUC = 0.748。同时分别对7个标记基因绘制了ROC曲线,所有基因的AUC均大于0.6。说明回归模型比单个标记基因具有更高的准确性和特异性。
1.何为LASSO回归和SVM-RFE算法? 在进行实操之前,小果想为大家简单的介绍一下这两种算法的原理,SVM-RFE(support vector machine - recursive feature elimination)是基于支持向量机的机器学习方法, 通过删减svm产生的特征向量来寻找最佳变量;LASSO回归(logistic regression)也是机器学习的方法之一,通过寻找分类错误最小时的...