虽然线性回归估计器 (linear regression estimator)在偏-方差权衡关系方面是无偏估计器,但正则化或惩罚回归,如Lasso, Ridge承认一些减少方差的偏倚。这意味着后者的最小化问题有两个组成部分:均方误差(linear regression estimator)和惩罚参数()。Lasso的L1惩罚使变量选择和收缩成为可能,而Ridge的L2惩罚使变量收缩成为...
Linear Regression(线性回归)、Lasso、Ridge(岭回归)是三个最常见的回归方法,后两者相比线性回归而言,增加了对回归权重大小的惩罚,进而降低了模型过拟合的风险。 这三种回归的定义如下: 给定一个数据集 其中D={(x1,y1),(x2,y2),...(xm,ym)},其中xi∈Rn,y∈R 要求优化出一个最佳的参数 w∈Rn ,得到对...
回归模型 linear regression 从回归模型的结果来看,我们可以看到部分变量是显著的,说明他们对房屋的价格,有很大的影响。显著的变量有车库面积,走廊,浴池,总体质量,房屋层高等等。从R方的结果来看,R方等于93%,因此,模型解释了房屋价格大部分的方差,可以说模型的拟合效果非常良好 残差表现来看模型的拟合好坏 左上方的图...
回归模型 linear regression 从回归模型的结果来看,我们可以看到部分变量是显著的,说明他们对房屋的价格,有很大的影响。显著的变量有车库面积,走廊,浴池,总体质量,房屋层高等等。从R方的结果来看,R方等于93%,因此,模型解释了房屋价格大部分的方差,可以说模型的拟合效果非常良好 残差表现来看模型的拟合好坏 左上方的图...
回归模型 linear regression 从回归模型的结果来看,我们可以看到部分变量是显著的,说明他们对房屋的价格,有很大的影响。显著的变量有车库面积,走廊,浴池,总体质量,房屋层高等等。从R方的结果来看,R方等于93%,因此,模型解释了房屋价格大部分的方差,可以说模型的拟合效果非常良好 ...
lr=LinearRegression() lr.fit(X[:,:-1],Y) lr.plot_fit_boundary(X[:,:-1],Y) 二.正则化 可以看到,仅仅加入了几个很离谱的异常点,就会对预测产生很大的影响,且偏离很远,这在实际情况中是很常见的;通常可以通过对模型参数添加正则化约束来避免这种情况,使其不会太“飘”,做法是在loss函数中为权重$w...
lin_reg = LinearRegression() %time lin_reg.fit_sgd(X_train_standard, y_train, n_iters=2) lin_reg.score(X_test_standard, y_test) # 输出:Wall time: 10 ms 0.7865171620468298 1. 2. 3. 4. 5. 6. 7. #问题:通过score()函数得到的 R^2 值,也就是准确度过小 ...
回归模型 linear regression 从回归模型的结果来看,我们可以看到部分变量是显著的,说明他们对房屋的价格,有很大的影响。显著的变量有车库面积,走廊,浴池,总体质量,房屋层高等等。从R方的结果来看,R方等于93%,因此,模型解释了房屋价格大部分的方差,可以说模型的拟合效果非常良好 ...
\in \mathbb{R}^n,列中的预测变量为x \in \mathbb{R}^{n×p},岭回归(ridge regression)可以...
回归模型 linear regression 从回归模型的结果来看,我们可以看到部分变量是显著的,说明他们对房屋的价格,有很大的影响。显著的变量有车库面积,走廊,浴池,总体质量,房屋层高等等。从R方的结果来看,R方等于93%,因此,模型解释了房屋价格大部分的方差,可以说模型的拟合效果非常良好 ...