yml-blog / Awesome-Efficient-LLM Public forked from horseee/Awesome-Efficient-LLM Notifications You must be signed in to change notification settings Fork 0 Star 0 A curated list for Efficient Large Language Models 0 stars 104 forks ...
1 2 3 4 5 6 7import numpy as np def sum_arrays(a, b): # Assumes both are the same size my_sum = np.empty(a.size, dtype=a.dtype) for i, (a1, b1) in enumerate(zip(np.nditer(a), np.nditer(b))): my_sum[i] = a1 + b1 return my_sum.reshape(a.shape) copy ...
lteaeococctctagratittratt2she2shehst8icd8iecnedesos2aaGeGn8diibdiAbrAmmmHyeHayeGcggptppzapzipHpoiprlrsrlrwreoroweoocozoonwnvavwviababwtsdteeseeeseemmEemrAaEuruss8s8esmtepgesmt2ae2nauennir5tde5ltdetosttiei7t7oteobeitniDeitDnndonnneorrt AEA8gg2iil5lee7nnDtt (NNK11e99y11s22igAAht((KTKeeecyyh...
Rediscovering NumPy from a performance perspective Leveraging NumPy views for computing efficiency and memory conservation Introducing array programming as a paradigm Configuring NumPy internals for efficiencyIt is difficult to overstate the importance of NumPy for doing data analytics with Python. This book...