在example上面 在原来COT prompt里面,作者给了一些简单的reasoning step,去引导model生成reasoning step,最后得到final answer 提出可以讲reasoning step变得更加具体,更加细化,更加复杂,LLM也会学着生成step by step的reasoning 通过这种方法,可以取得很好的performance improvement 在探索explore上面 可以让LLM生成很多的ration...
由于资 Fine-tune-CoT elicits complex reasoning in small models 表1 总结了使用所提出的 Fine-tune-CoT 的学生模型的准确率,与基于提示的 CoT 基线以及标准微调相比。虽然 Zero-shot-CoT 在非常大的 175B 模型上表现出卓越的性能(Kojima 等人,2022 年),但它未能使所有三个较小的模型进行复杂推理,在所有任务...
The recent advent of large language models has reinvigorated debate over whether human cognitive capacities might emerge in such generic models given sufficient training data. Of particular interest is the ability of these models to reason about novel pr
续费VIP 立即续费VIP 会员中心 VIP福利社 VIP免费专区 VIP专属特权 客户端 登录 百度文库 其他 causal reasoning and large language modelscausal reasoning and large language models 因果推理和大型语言模型 ©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
0x1:Large Language Models 语言模型(Language Models, LMs)是具有理解和生成人类语言能力的计算模型。LMs具有预测词序列的概率或根据给定输入生成新文本的能力。 N-gram模型是LMs中最常见的类型,它基于前文环境来估计下一词的概率。 然而,LMs也面临着一些挑战,例如罕见或未见词的问题、过拟合问题以及捕捉复杂语言现象...
Title: Empowering Large Language Models with Faithful Reasoning 主讲人(Speaker):Liangming Pan 时间(Date & Time):2024.7.5;10:00-11:30 地点(Location):理科一号楼1453(燕园校区) Room 1453, Science Building #1 (Yanyuan) 邀请人(H...
The paper highlights one of the main challenges that current language models face. As the UCLA researchers note, “On the one hand, when a model is trained to learn a task from data, it always tends to learn statistical patterns, which inherently exist in reasoning examples; on the other ...
When it comes to artificial intelligence, appearances can be deceiving. The mystery surrounding the inner workings of large language models (LLMs) stems from their vast size, complex training methods, hard-to-predict behaviors, and elusive interpretability. ...
Large Language Model Cascades with Mixture of Thoughts Representations for Cost-efficient Reasoning Murong Yue, Jie Zhao, Min Zhang, Liang Du, Ziyu Yao ICLR 2024|October 2023 Publication 下载BibTex Large language models (LLMs) such as GPT-4 have exhibi...
整个idea比较简单,就是把language输出的最后一层hidden-state作为next token继续用于下一步预测 在训练时,采用课程学习的思想,分成N+1个阶段。初始阶段按照最原始的language的cot方式训练,然后第一阶段在其中增加c个连续的hidden-state替换一个cot,像这样逐渐替换掉所有的cot。如下图,其中<bot>和<eot>分别代表开始和...