Tavily是一个为大型语言模型(LLMs)和检索增强生成(RAG)优化的搜索引擎,旨在提供高效、快速且持久的搜索结果。 访问链接: aishenqi.net/tool/tavil 安转该工具依赖 pip install -U langchain-community tavily-python langgraph 代码 import os os.environ["TAVILY_API_KEY"] = 'tvly-LchvZD0ISHRXozHqEW9...
基于ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。 1.介绍 一种利用 langchain思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。 受GanymedeNil 的项目 document.ai和AlexZhangji 创建...
Langchain-Chatchat基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的 RAG 与 Agent 应用项目。 确保conda已安装: 打开终端。输入conda --version并按回车,如果conda已正确安装,它将显示安装的版本号。如果未安装,请先下载并安装Miniconda或Anaconda。 创建新环境: 使用conda命令创建一个新的...
对于开发者而言,WebLangChain_ChatGLM提供了一个开放的平台,允许他们根据自己的需求定制和优化系统。通过参与开源项目、贡献代码和共享经验,开发者可以共同推动中文RAG系统的发展。同时,普通用户也可以通过使用搭载WebLangChain_ChatGLM的应用程序,体验到更加智能和高效的对话生成服务。 总之,WebLangChain_ChatGLM作为结合We...
在LLM的实际应用场景中,经常会需要用到特定领域用户的数据,但这些数据不属于模型训练集的一部分,要实现这一需求,最好的方法是通过检索增强生成(RAG)。在用户提问时,先检索特定的外部数据,把检索结果作为上下文传递给LLM,以便大模型返回更精准的结果。今天我们就带大家了解下在LangChain里RAG的使用,结合智谱AI GLM4...
设计RAG prompt template 当完成检索后,RAG 会将相似度最高的检索结果包装为 Prompt,让 LLM 进行筛选与重构,因此我们需要为每个 LLM 设计一个 RAG prompt template,用于在 Prompt 中区分这些检索结果,而这部分的提示信息我们又可以称之为 context 上下文,以供 LLM 在生成答案时进行参考。以 ChatGLM3 为例,它的...
基于ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。 1.介绍 一种利用langchain思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。
基于ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。 汀丶人工智能 2024/05/06 1.1K0 RAG+AI工作流+Agent:LLM框架该如何选择,全面对比MaxKB、Dify、FastGPT、RagFlow、Anything-LLM,以及更多推荐 ...
WebLangChain_ChatGLM系统通过结合WebLangChain和ChatGLM3等先进技术,为中文用户打造了一个强大的RAG系统。该系统能够利用互联网作为外部知识库,提高大型语言模型回答问题的准确性和可靠性。随着人工智能技术的不断发展,WebLangChain_ChatGLM系统将在更多领域发挥重要作用,为人们的生活和工作带来更加智能和便捷的体验。同时...
基于ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。 1.介绍 一种利用langchain思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。