无类型lambda演算(Untyped lambda calculus) lambda-项(lambda-terms) 自由变量,约束变量和绑定变量(Free variables,bound variables and binding variables) Alpha 转换 (Alpha conversion) 替换(Substitution) Lambda-项 模 alpha-等价 (lambda-terms modulo alpha-equivalence) Beta-归约 (Beta reduction) 范式与合流...
Alpha替换(Alpha conversion) 记M^{x\to y} 为把M 中所有自由变量 x 换成y . 重命名关系(renaming),符号为 =_{\alpha} ,定义为: \lambda x.M =_{\alpha} \lambda y.M^{x\to y} ,其中满足 y \notin FV(M) 且y 不是M 中的binding变量. 若M =_{\alpha} N 则M \, L =_{\alpha} ...
Lambda Calculus λ演算是一套用于研究函数定义、函数应用和递归的形式系统。它由 Alonzo Church 和 Stephen Cole Kleene 在 20 世纪三十 年代引入,Church 运用 lambda 演算在 1936 年给出 判定性问题 (Entscheidungsproblem) 的一个否定的答案。这种演算可以 用来清晰地定义什么是一个可计算函数。关于两个 lambda ...
Alpha替换(Alpha conversion)允许将自由变量替换,Alpha等价(α-equivalent)意味着两个项在替换后相同。代换(Substitution)遵循特定规则,引入顺序代换以避免变量名冲突,Lambda项模Alpha等价(Lambda-terms modulo α-equivalence)考虑了Alpha等价的关系。Beta化简(Beta reduction)包括单步化简和零步或多步...
Lambda Conversion Explore with Wolfram|Alpha More things to try: Venn diagram #^2& /@ {1, 2, 3} #^2& @ Sin[#]& @ Log[#]& @ x References Barendregt, H. P.The Lambda Calculus.Amsterdam, Netherlands: North-Holland, 1981.
lambda calculus : λ 定义 通过lambda , currying, closure, alpha, beta 可以定义出一个"完备"的计算体系. 在此之上,我们可以构造出任意复杂的程序. 要描述一个形式系统,我们首先需要约定用到的基本符号,对于本系列所介绍的lambda演算,其符号集包括λ . ()...
Lambda CalculusConstructive Type TheoryWe consider a pre-existing formalization in Constructive Type Theory of the pure Lambda Calculus in its presentation in first order syntax with only one sort of names and alpha-conversion based upon multiple substitution, as well as of the system of assignment ...
Lambda CalculusConstructive Type TheoryWe formulate principles of induction and recursion for a variant of lambda calculus in its original syntax (i.e., with only one sort of names) whereα-conversion is based upon name swapping as in nominal abstract syntax. The principles allow to work modulo...
Lambda Calculus 今天主要讲解下λ表达式如何reduce Alpha equivalence 我们经常看到这样的表达式 λx.x 其实这里的参数x没有实际意义,仅仅是一个语义无关的角色,也就是说你可以用y来替换x,这个是等价的函数 λx.x λz.z λy.y Beta reduction 当我们对函数进行计算的时候,总是用实际参数来代替行参,同样的,...
In this article we present a sound, complete, and cut-free tableau calculus {\textbf{TC}}_{R_{\lambda }} for the logic {\textbf{L}}_{R_{\lambda }} being a formalisation of a Russell-style theory of definite descriptions with the iota-operator used to construct definite descriptions, ...