范数有很多种,我们常见的有L1-norm和L2-norm,其实还有L3-norm、L4-norm等等,所以抽象来表示,我们会写作Lp-norm,一般表示为 : 对于上面这个抽象的公式,如果我们代入p值, 若p为1,则就是我们常说的L1-norm: 若p为2,则是我们常说的L2-norm: 我们引用文章里的图片,L2-norm的距离就是两个黑点之间的绿线,而另...
范数有很多种,我们常见的有L1-norm和L2-norm,其实还有L3-norm、L4-norm等等,所以抽象来表示,我们会写作Lp-norm,一般表示为 : 对于上面这个抽象的公式,如果我们代入p值, 若p为1,则就是我们常说的L1-norm: 若p为2,则是我们常说的L2-norm: 我们引用文章里的图片,L2-norm的距离就是两个黑点之间的绿线,而另...
L1、L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数。 范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。 L1就是曼哈顿距离 L2就是...
L1范数(L1 norm)是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则算”(Lasso regularization)。 比如 向量A=[1,-1,3], 那么A的L1范数为 |1|+|-1|+|3|. 简单总结一下就是: L1范数: 为x向量各个元素绝对值之和。 L2范数: 为x向量各个元素平方和的1/2次方,L2范数又称Euclidean范数或者Frobenius范...
Dropout 的思想和L1 norm,L2 norm 不同,它并不是通过学习到较小的权重参数来防止过拟合的,它是通过在训练的过程中随机丢掉部分神经元来减小神经网络的规模从而防止过拟合。 这里的丢掉不是永远的丢掉,而是在某一次训练中丢掉一些神经元,这些丢掉的神经元有可能在下一次迭代中再次使用的,因此这里需要和Relu激活函数...
在实践中将 Max-Norm Regularization 结合dropout 使用一般效果将会更好,下图是使用各种规范化技术在不同数据集上的表现: MNIST SVHN 正则化技术还有很多,比如提前终止、数据增强、参数绑定、参数共享、对抗训练、切面距离、正切传播等……,本文介绍了几种最常用的正则化技术,希望对你有帮助。 6、参考资料 1、Aure...
根据上述公式 L1-norm 和 L2-norm 的定义也就自然而然得到了。 先将p=1 代入公式,就有了 L1-norm 的定义: 然后代入 p=2,L2-norm 也有了: L2 展开就是熟悉的欧几里得范数: 题外话,其中 L1-norm 又叫做 taxicab-norm 或者 Manhattan-norm,可能最早提出的大神直接用在曼哈顿区坐出租车来做比喻吧。下图中绿...
l1-norm loss & l2-norm loss (l1范数和l2范数作为正则项的比较),程序员大本营,技术文章内容聚合第一站。
L1范数(L1 norm)是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则算”(Lasso regularization)。 比如 向量A=[1,-1,3], 那么A的L1范数为 |1|+|-1|+|3|. 简单总结一下就是: L1范数: 为x向量各个元素绝对值之和。 L2范数: 为x向量各个元素平方和的1/2次方,L2范数又称Euclidean范数或者Frobenius范...
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ 1 \ell_1 ℓ1-norm和ℓ 2 \ell_2 ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。 L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限...