牛顿法是二阶优化算法,每步优化都需要计算出原函数的二阶梯度矩阵,即Hession矩阵,并获得类似H*x=b的形式的方程,并进行求解,因此使用牛顿法时可以搭配共轭梯度法进行使用。 4. 拟牛顿法(DFP/BFGS) 牛顿法需要计算原函数的二阶导Hession矩阵,并解H*x=b方程,相当于求解 Hession 的逆矩阵,为此拟牛顿法对Hession矩...
与L-BFGS相比,第一步用伪梯度代替梯度,第二、三步要求一维搜索不跨象限,也就是迭代前的点与迭代后的点处于同一象限,第四步要求估计Hessian矩阵时依然使用损失函数的梯度。 3 源码解析 3.1 BreezeLBFGS spark Ml调用breeze中实现的BreezeLBFGS来解最优化问题。 val optimizer = new BreezeLBFGS[BDV[Double]]($(...
L-BFGS-B 是一种非线性优化算法,很多时候需要使用 Lagrange 乘数法来处理约束条件。在 Python 中,可以使用 Scipy 的 minimize 函数来实现 L-BFGS-B 算法,并指定约束条件以及约束条件处理方法。具体示例代码如下: from scipy.optimize import minimize # 定义目标函数以及约束条件函数 def obj_func(x): return x[...
在“优化算法——拟牛顿法之BFGS算法”中,我们得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可对上式进行变换,得到 令 ,则得到: 二、BGFS算法存在的问题 在BFGS算法中。每次都要存储近似Hesse矩阵 ,在高维数据时,存储 浪费非常多的存储空间,而在实际的运算过程中。我们须要的是搜索方向。因此出现了L-BFGS算...
在博文“优化算法——拟牛顿法之L-BFGS算法”中,已经对L-BFGS的算法原理做了详细的介绍,本文主要就开源代码liblbfgs重新回顾L-BFGS的算法原理以及具体的实现过程,在L-BFGS算法中包含了处理L1正则的OWL-QN算法,对于OWL-QN算法的详细原理,可以参见博文“优化算法——OWL-QN”。
一、BFGS算法 在“优化算法——拟牛顿法之BFGS算法”中,我们得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可对上式进行变换,得到 令 ,则得到: 二、BGFS算法存在的问题 在BFGS算法中。每次都要存储近似Hesse矩阵 ,在高维数据时,存储 浪费非常多的存储空间,而在实际的运算过程中。我们须要的是搜索方向。因此...
在优化中出现错误:"L-BFGS-B需要有限的fn值" 是由于优化算法L-BFGS-B要求目标函数(fn)的值是有限的。这个错误通常出现在目标函数返回无穷大或无穷小的情况下。 解决这个错误的方法是检查目标函数的实现,并确保返回的值是有限的。以下是一个示例代码,展示如何避免这个错误: ...
限制空间的BFGS方法 还是一样,我们先提一下BFGS方法。如果变成了限制空间的情况,这个方法就会变成LBFGS。 在上一节我们提过一般情况下的BFGS方法,它利用的是线搜索方法的框架。那么在这里我们依然考虑的是这个框架,所以我们要选取的搜索方向其实就是 p_k = -B_k^{-1}\nabla f(x_k) = -H_k \nabla f(...
一、BFGS算法 在“优化算法——拟牛顿法之BFGS算法”中,我们得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可对上式进行变换,得到 令 ,则得到: 二、BGFS算法存在的问题 在BFGS算法中,每次都要存储近似Hesse矩阵 ,在高维数据时,存储 浪费很多的存储空间,而在实际的运算过程中,我们需要的是搜索方向,因此出现了...
在博文“优化算法——拟牛顿法之L-BFGS算法”中,已经对L-BFGS的算法原理做了详细的介绍,本文主要就开源代码liblbfgs重新回顾L-BFGS的算法原理以及具体的实现过程,在L-BFGS算法中包含了处理L1正则的OWL-QN算法,对于OWL-QN算法的详细原理,可以参见博文“优化算法——OWL-QN”。