该聚类方法的优点在于它易于实现和可扩展性,而且对于大规模数据集具有较高的速度和良好的适应性。 1. 初始聚类中心的选择会影响聚类结果:如果初始聚类中心点选择的不够好,就有可能导致算法不能正确地将数据点分配到它们所属的聚类中。 3. 对于非球形分布的数据集,k均值聚类的效果会受到影响:如果数据点不是均匀...
由于k均值聚类算法采用欧氏距离度量样本之间的相似度,因此其对数值型数据具有很好的适应性。 1. 聚类数目需要预先设定。由于k均值聚类算法需要指定聚类的数量k,因此需要提前了解数据集的特征,否则可能会得到较差的聚类结果。 2. 对于非球形数据聚类效果不佳。由于k均值聚类算法采用欧氏距离作为相似度度量的方法,因此对于...
1)选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心; 2)对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类; 3)更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值; 4)判断聚类中心和目...
试述K-均值聚类的方法原理. 参考答案:K-均值法是一种非谱系聚类法,把每个样品聚集到其最近形心(均值)类中,它是把样品聚集成K个类的集合,类的个数k可以预先给... 点击查看答案进入题库练习 查答案就用赞题库小程序 还有拍照搜题 语音搜题 快来试试吧 无需下载 立即使用 你可能喜欢 问答题 试述系统聚...
七.什么是聚类分析?常用的聚类分析方法有哪些?简述K-均值算法的基本原理及算法过程,编写程序,用K-均值算法对下表中的样本进行聚类,设K=3。讨论初始聚类中心的选择对聚类
与技巧、特征工程(数据清洗、变量降维、特征选择、群优化算法)、回归拟合(线性回归、BP神经网络、极限学习机)、分类识别(KNN、贝叶斯分类、支持向量机、决策树、随机森林、AdaBoost、XGBoost与LightGBM等)、聚类分析(K均值、DBSCAN、层次聚类)、关联分析(关联规则、协同过滤、Apriori算法)的基本原理及Python代码实现方法...