[5] Munkres, J., Algorithms for the Assignment and Transportation Problems.J. Soc. Ind. Appl. Math.1957,5(1), 32-38. [6] Hopcroft, J. E.; Karp, R. M., Ann5/2Algorithm for Maximum Matchings in Bipartite Graphs.
KM(Kuhn-Munkres Algorithm)二分图最大权完美匹配。问题引入给定一张二分图,左右部均有 nn 个点,共有 mm 条带权边,且保证有完美匹配。 求一种完美匹配的方案,使得最终匹配边的边权之和最大。定义可行顶标每个结点分配一个权值 l(i)l(i),对于所有边 (u,v)(u,v) 满足w(u,v)≤l(u)+l(v)w(u,...
To enhance the computational efficiency, a novel metaheuristic is developed, which integrates adaptive large neighborhood search and the Kuhn–Munkres algorithm. Comprehensive numerical experiments are conducted to demonstrate the potential of the proposed approach, in comparison with state-of-the-art ...
使用Kuhn-Munkres(KM)算法将聚类后的预测标签映射为真实标签 问题:对一部分样本进行聚类,得到了聚类标签,同时这部分数据有真实标签,为了计算聚类之后的准确率,如何将聚类标签数据映射到真实标签数据呢? Python包的安装:pip install munkres munkres:假设n个工人完成n个工作,每个工人完成工作的代价不同,一个工作只能由...
#include <cstdio> #include <queue> #include <algorithm> using namespace std; const int N = 128; const int INF = 1 << 28; class Graph { private: bool xckd[N], yckd[N]; int n, edge[N][N], xmate[N], ymate[N]; int lx[N], ly[N], slack[N], prev[N]; queue<int> ...
Kuhn-Munkres algorithmHungarian methodThe Many to Many (M-M) assignment problem is an important open problem where one task is assigned to many, but different, agents and one agent may undertake many, but different, tasks. The Kuhn-Munkres (K-M) algorithm is a famous and traditional process...
51CTO博客已为您找到关于Kuhn-Munkres算法的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及Kuhn-Munkres算法问答内容。更多Kuhn-Munkres算法相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
我写这个是因为前几天整理模板的时候居然发现我的KM还是O(n^4)的,虽然实际运行效果大部分和O(n^3)差不多,但是理论的上界仍然让我不爽,就像network simplex algorithm一样。 先说一下KM的适用范围。据我分析KM实际上可以对任意带权(无论正负权)二分图求最大/最小权完美匹配,唯一的一个,也是最重要的一个...
关键词: 二分图 / 最优匹配 / Kuhn-Munkres算法 Abstract: With Kuhn-Munkres algorithm no optimal matching is founded on matching subset.An extended Kuhn-Munkres algorithm is proposed here to solve this problem of local matching with lower bound constraints, to search for a bipartite graph matchin...
The Kuhn–Munkres (K–M) algorithm always requires that a task be assigned to exactly one agent who undertakes exactly one task. This constraint limits the KM algorithm to solving the One to One (1–1) assignment problem. With respect to the KM algorithm, the M–M assignment problem remain...