为了更好地评价阅读理解模型的鲁棒性,基于Dureader数据集,通过自动抽取和人工标注的方法,对过敏感,过稳定和泛化3个问题分别构建测试数据集.还提出基于答案抽取和掩码位置预测的多任务学习方法.实验结果表明,所提方法能显著地提高阅读理解模型的鲁棒性,所构建的测试集能够对模型的鲁棒性进行有效评估. 查看全部>>关键词:...