Y. Liang, and Y. Wang, “Maintaining the status quo: Capturing invariant relations for ood spatiotemporal learning,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 3603–3614.
in Thirty-seventh Conference on Neural Information Processing Systems, 2023.[6] X. Liu, Y. Xia, Y. Liang, J. Hu, Y. Wang, L. Bai, C. Huang, Z. Liu, B. Hooi, and R. Zimmermann, “Largest: A benchmark dataset for large-scale traffic forecasting,” Advances in Neural Information ...
Y. Liang, and Y. Wang, “Maintaining the status quo: Capturing invariant relations for ood spatiotemporal learning,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 3603–3614.
Y. Liang, and Y. Wang, “Maintaining the status quo: Capturing invariant relations for ood spatiotemporal learning,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 3603–3614.
[4] R. Jiang, Z. Wang, J. Yong, P. Jeph, Q. Chen, Y. Kobayashi, X. Song, S. Fukushima, and T. Suzumura, “Spatio-temporal meta-graph learning for traffic forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 7, 2023, pp. 8078–8086. ...
[5] Y. Xia, Y. Liang, H. Wen, X. Liu, K. Wang, Z. Zhou, and R. Zimmermann, “Deciphering spatio-temporal graph forecasting: A causal lens and treatment,” in Thirty-seventh Conference on Neural Information Processing Systems, 2023. ...
基于MRSDAE-KPCA结合Bi-LST的滚动轴承剩余使用寿命预测.pdf,基于MRSDAE-KPCA 结合Bi-LST 的 滚动轴承剩余使用寿命预测 摘要:针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健 康因子时还需要专家经验进行人工提取等问题,提
Conference 2023, 2023, pp. 2655–2665.[8] Y. Zhang, Y. Li, X. Zhou, X. Kong, and J. Luo, “Curb-gan: Conditional urban traffic estimation through spatio-temporal generative adversarial networks,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & ...
[5] Y. Xia, Y. Liang, H. Wen, X. Liu, K. Wang, Z. Zhou, and R. Zimmermann, “Deciphering spatio-temporal graph forecasting: A causal lens and treatment,” in Thirty-seventh Conference on Neural Information Processing Systems, 2023. ...
[5] Y. Xia, Y. Liang, H. Wen, X. Liu, K. Wang, Z. Zhou, and R. Zimmermann, “Deciphering spatio-temporal graph forecasting: A causal lens and treatment,” in Thirty-seventh Conference on Neural Information Processing Systems, 2023. ...