默认值为 fp16。 3.4.10Number of CPU threads per core每个核心的 CPU 线程数 训练期间每个 CPU核心的线程数。基本上,数字越高,效率越高,但您需要根据您的硬件配置调整设置。 默认值为 2。 3.4.11 Seed 在训练过程中,存在许多随机过程,例如“图像应该以什么顺序加载”和“训练图像应该添加多少噪声(详细信息省...
Number of CPU threads per core CPU每核線程數。主要為顯存,根據所購執行個體和需求調整。 Learning rate 學習率。預設0.0001。 LR Scheduler 學習率調度器。按需選擇cosine或cosine with restart等函數。 LR Warmup(% of steps) 學習預熱步數。按需調節,預設為10,無需預熱則可選擇0。
Number of CPU threads per core CPU每核线程数。主要为显存,根据所购实例和需求调整。 Learning rate 学习率。默认0.0001。 LR Scheduler 学习率调度器。按需选择cosine或cosine with restart等函数。 LR Warmup(% of steps) 学习预热步数。按需调节,默认为10,无需预热则可选择0。
train_batch_size:训练批处理大小,指定同时训练图像的数量,默认值1,数值越大,训练时间越短,消耗内存越多。 Number of CPU threads per core:训练期间每个CPU核心的线程数。基本上,数字越高,效率越高,但有必要根据规格调整设置。 epoch:训练周期,假设想通过10次阅读50张图片来学习。在这种情况下,1个周期是50x10=...
"Number of CPU threads per core": "每个核心的CPU线程数", "Number of images to group together": "要一起分组的图像数量", "Number of updates steps to accumulate before performing a backward/update pass": "执行反向/更新传递之前需要积累的更新步骤数", "object template": "对象模板", "Only fo...
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
Number of CPU threads per core CPU每核线程数。主要为显存,根据所购实例和需求调整。 Learning rate 学习率。默认0.0001。 LR Scheduler 学习率调度器。按需选择cosine或cosine with restart等函数。 LR Warmup(% of steps) 学习预热步数。按需调节,默认为10,无需预热则可选择0。 Optimizer 优化器。按需选择,默...
Number of CPU threads per core The number of threads per vCPU. Configure the parameter based on your business requirements. Learning rate The learning rate. Default value: 0.0001. LR Scheduler The learning rate scheduler. Configure the parameter based on your business requirements. LR...
"num_cpu_threads_per_process": 4, "num_machines": 1, "num_processes": 2, "optimizer": "Adafactor", "optimizer_args": "scale_parameter=False relative_step=False warmup_init=False weight_decay=0.01", "output_dir": "/home/Ubuntu/apps/stable-diffusion-webui/models/Stable-diffusion", "ou...
label='Number of CPU threads per process', value=os.cpu_count(), label='Number of CPU threads per core', value=2, ) seed = gr.Textbox(label='Seed', value=1234) with gr.Row(): 80 changes: 76 additions & 4 deletions 80 library/train_util.py @@ -12,6 +12,7 @@ import os...