具体训练过程分两个阶段完成:第一个阶段利用Hint-based loss诱导学生网络达到一个合适的初始化状态(只更新W_Guided与W_r);第二个阶段利用教师网络的soft label指导整个学生网络的训练(即知识蒸馏),且Total loss中Soft target相关部分所占比重逐渐降低,从而让学生网络能够全面辨别简单样本与困难样本(教师网络能够有效辨...
此时需要引入L2 loss指导训练过程,该loss计算为教师网络Hint layer与学生网络Guided layer输出Feature Maps之间的差别,若二者输出的Feature Maps形状不一致,Guided layer需要通过一个额外的回归层,具体如下: 具体训练过程分两个阶段完成:第一个阶段利用Hint-based loss诱导学生网络达到一个合适的初始化状态(只更新W_Guide...
真实值就是Hard-target,loss函数会使得偏差越来越小。在知识蒸馏中,直接学习每个类别的概率(老师模型预...
0.Introduction 知识蒸馏(Knowledge Distillation,简记为 KD)是一种经典的模型压缩方法,核心思想是通过引导轻量化的学生模型“模仿”性能更好、结构更复杂的教师模型(或多模型的 ensemble),在不改变学生模型结构的情况下提高其性能。2015 年 Hinton 团队提出的基于“响应”(response-based)的知识蒸馏技术(一般将...
Indicator Function(摘自wiki) 一般的训练标准(略) KD的一般训练标准 用于降低model和data的交叉熵 KD,降低teacher和student的交叉熵 总的Loss函数 NMT的KD 主要分为三类 Word-Level Sequence-Level Sequence-Interpolation 三种类别的示意图 Word-Level 同一般情况下的KD ...
GitHub地址:https://github.com/peterliht/knowledge-distillation-pytorch total loss的Pytorch代码如下,引入了精简网络输出与教师网络输出的KL散度,并在诱导训练期间,先将teacher network的预测输出缓存到CPU内存中,可以减轻GPU显存的overhead: defloss_fn_kd(outputs, labels, teacher_outputs, params): ...
(1) 在这个部分APPRENTICE: USING KNOWLEDGE DISTILLATION TECHNIQUES TO IMPROVE LOW-PRECISION NETWORK ACCURACY,我们将ST模型一起训练。首先上面的模型是首先预训练T网络,再通过T网络来指导S网络进行学习,在这种情况下T网络的学习方式(eg:Learning Rate,Loss Function)将...
Knowledge distillation, conversely, also trains the student model to mimic the teacher model’s reasoning process through the addition of a specialized type of loss function,distillation loss, that uses discrete reasoning steps assoft targetsfor optimization. ...
and it is this dark knowledge that we are transferring to the student model in the distillation process. When computing the loss function vs. the teacher's soft targets, we use the same value of T to compute the softmax on the student's logits. We call this loss the "distillation loss...
Knowledge Distillation Loss Function The knowledge distillation lossknowledgeDistLossconsists of a weighted average of the hard loss and the soft loss: knowledgeDistLoss=lossHard+t2∗lossSoft where: lossHardis the cross-entropy loss between the student network outputs,YStudent, and the true labelsTar...