# ROCR画ROC曲线就是2步,先prediction,再performancepred <- prediction(prob,truth_test) # 预测概率,真实类别perf <- performance(pred, "tpr","fpr") # ROC曲线的横纵坐标,不要写错了auc <- round(performance(pred, "auc")@y.values[[1]],digits = 4) # 提取AUC值auc## [1] 0.8477# 画图plot...
pred$prediction 1. 想要将预测数据可视化也很方便,只需要调用ggplot2绘图包里面的auplot(pred)即可。此时我们可以在图中清楚地看到原始数据、特征数据、标签数据、实例数据以及预测数据,不同类型的数据有不同的颜色及点的类型。使用knn_prediction()函数做预测,得到预测的值为37.4,对应下图中的红点:...
这个系列的第一篇文章从简单的分类算法KNN开始:这个算法真的非常的简单,简单到初中生都可以掌握,所以大家一定要有信心:kNN is arguably the simplest machine learning algorithm. In spite of its simplicity, kNN can provide surprisingly good classification performance, and its simplicity makes it easy to in...
plt.plot(T, y_, color='navy', label='prediction') plt.axis('tight') plt.legend() plt.title("KNeighborsRegressor (k = %i)" % (k)) plt.tight_layout() plt.show() 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. ...
We should make sure the K value is greater than one; it hinders in prediction to be accurate. The more the K value, the more accurate the prediction can be due to the majority. It is preferable to have K as an odd number. Otherwise, it can lead to a tie-breaker. ...
(如预测明天是下雨、天晴还是多云) // 回归问题: 回归问题的输出为连续型变量,为定量输出(如明天温度为多少度) model->setIsClassifier(true); model->train(tData); // 预测分类 double train_hr = 0, test_hr = 0; Mat response; // compute prediction error on train and test data for (int i ...
KNN Prediction Routine using Pre-Calculated DistancesAtina Dunlap Brooks
可视化一下 plot(test.data$medv, predictions,main="Prediction performance of kNN regression") #add a reference line x=y abline(0,1, col="red") #arguments 0,1 refer to intercept & slope of the line 这也说明这个模型的表现不错 那么以上就是简单的用R进行KNN回归的步骤 -以上- ...
if __name__ == "__main__": train_set = [] test_set = [] train_set, test_set = loaddata('iris_train.csv', 'iris_test.csv') print(train_set) print(len(train_set)) print(test_set) print(len(test_set)) prediction = [] k = 3 for i in range(len(test_set)): neighbors...
kNN is arguably the simplest machine learning algorithm. In spite of its simplicity, kNN can provide surprisingly good classification performance, and its simplicity makes it easy to interpret. KNN算法思想解释 K最近邻算法是一种分类算法,算法思想是在数据集中找到与样本最相似的K个样本,如果这K个样本中...