K-means聚类算法思想可以看它设计诞生的伪代码看出: 我们发现这是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类...
Kmeans K-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据他们的属性分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。其聚类过程可以用下图表示: 如图所示,数据样本用圆点表示,每个簇的中心点用叉叉表示。(a)刚开始时是原始数据,杂乱无章,没有label...
计划回顾梳理的系列有: 1.K-MEANS聚类算法的应用过程:数据读取-数据预处理-聚类指标的选取(含python代码)-聚类。 2.dataframe的操作整理:数值的读取等 1. K-MEANS的基本原理 K-means几乎是最常用的无监督学习方法,本质上是基于距离进行计算分类,距离越近,相似度越大,会划分成一类。 K的意思是聚成K类,需要我们...
K-means聚类算法思想可以看它设计诞生的伪代码看出: 我们发现这是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类...