1)在数据集中随机挑选1个点作为种子点 代码语言:javascript 代码运行次数:0 复制 Cloud Studio代码运行 ##随机挑选一个数据点作为种子点 defselect_seed(Xn):idx=np.random.choice(range(len(Xn)))returnidx 2)计算剩数据点到这个点的距离d(x),并且加入到列表 代码语言:javascript 代码运行次数:0 复制 Cloud ...
一、简介 K均值聚类算法是先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件...
代码: importnumpyasnpinput=np.random.rand(300,3)defkmeans(input,k,max_iter=100,tol=1e-4):# tol(float):Tolerance for convergence# np.random.choice()必须从一维ndarray/list/tuple中随机抽取数字,并组成指定size的数组centroids=input[np.random.choice(input.shape[0],size=k,replace=False)]# Fals...
plt.show() 现在用K-Means聚类方法来做聚类,首先选择k=2,代码如下: from sklearn.cluster import KMeans y_pred = KMeans(n_clusters=2, random_state=9).fit_predict(X) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.show() k=2聚类的效果图输出如下: 看看用Calinski-Harabasz Index评估的...
2 代码解释from sklearn.cluster import KMeansKMeans传参详解:n_clusters : k值,聚类中心数量(开始时需要产生的聚类中心数量),默认为8 max_iter : 算法运行的最大迭代次数,默认300,凸数据集不用管这个数,凹数据集需要指定。 tol: 容忍的最小误差,当误差小于tol就会退出迭代(算法中会依赖数据本身),默认为1e...
K-means聚类算法及python代码实现 K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的) 1、概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇...
kmeans聚类算法代码实现opencv kmeans聚类算法应用 1. Kmeans聚类算法原理 1.1 概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。
k-means实现代码 k-means是一种迭代求解的聚类算法,是将数据分为K组,k由人为指定,随机选取一个中心点为初始的聚类中心,然后重复计算数据到之前 n 个聚类中心最远的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有...
以下是我的代码,包含注释、空行总共26行,有效代码16行。1import numpy as np 2 3defkmeans_xufive(ds, k): 4"""k-means聚类算法 5 6 k - 指定分簇数量 7 ds - ndarray(m, n),m个样本的数据集,每个样本n个属性值 8 """ 910 m, n = ds.shape # m:样本数量,n:每...