4. score_list = list() # 用来存储每个K下模型的平局轮廓系数 5. silhouette_int = -1 # 初始化的平均轮廓系数阀值 6. for n_clusters in range(2, 10): # 遍历从2到10几个有限组 7. model_kmeans =KMeans(n_clusters=n_clusters, random_state=0) # 建立聚类模型对象 8. cluster_labels_tmp ...
[10, 2], [10, 4], [10, 0]]) >>> kmeans = KMeans(n_clusters=2, random_state=0, n_init="auto").fit(X) >>> kmeans.labels_ array([1, 1, 1, 0, 0, 0], dtype=int32) >>> kmeans.predict([[0, 0], [12, 3]]) array([1, 0], dtype=int32) >>> kmeans.cluster...
# 使用PCA进行降维,以便更好地进行聚类分析pca = PCA(n_components=2) # 降至2维以便可视化 X_pca = pca.fit_transform(X_std) # 使用K-means进行聚类 k = 3 # 基于先前的分析决定将用户分为3个群体 kmeans = KMeans(n_clusters=k, random_state=42) y_kmeans = kmeans.fit_predict(X_pca) #...
fromsklearn.datasetsimportmake_blobsX,y_true=make_blobs(n_samples=300,centers=4,cluster_std=0.6,random_state=0)plt.scatter(X[:,0],X[:,1],s=50);fromsklearn.clusterimportKMeans kmeans=KMeans(n_clusters=4)kmeans.fit(X)y_kmeans=kmeans.predict(X)plt.figure()plt.scatter(X[:,0],X[...
首先是n_clusters参数,这个参数表示要将数据集分成的簇的个数K。在实际应用中,选择合适的簇的个数是很重要的,可以通过手肘法、轮廓系数等方法来确定最优的簇的个数。 另一个重要的参数是init,它表示初始化簇中心的方法。K-means算法的性能很大程度上取决于簇中心的初始化,常用的初始化方法有k-means++和random两...
cluster = KMeans(n_clusters=n_clusters, random_state=0).fit(X) # 获取聚类结果的标签 y_pred = cluster.labels_ # 输出聚类的标签 print(y_pred) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
idx = kmeans(X,k) performs k-means clustering to partition the observations of the n-by-p data matrix X into k clusters, and returns an n-by-1 vector (idx) containing cluster indices of each observation. Rows of X correspond to points and columns correspond to variables. By default,...
x_true,y_true=make_blobs(n_samples=600,n_features=2,centers=4,random_state=1)# 绘制出所生成的数据 plt.figure(figsize=(6,6))plt.scatter(x_true[:,0],x_true[:,1],c=y_true,s=10)plt.title("Origin data")plt.show() 输出为: ...
在Python中,利用scikit-learn库的KMeans,我们可以轻松实现算法。例如,设置n_clusters为3,通过肘部法则确定最佳聚类数,然后构建模型并获取聚类结果、中心点、SSE等信息。可视化结果,如鸢尾花数据集的花瓣长度和宽度分布,有助于理解聚类效果。通过R语言的kmeans包,我们同样能分析usarrests数据,观察K=4...
static int[] InitClustering(int numTuples, int numClusters, int randomSeed) { Random random = new Random(randomSeed); int[] clustering = new int[numTuples]; for (int i = 0; i<numClusters; ++i)clustering[i] =i;for(inti=numClusters;i<clustering.Length; ++i)clustering[i] =random....