问答题:请简述K-means聚类算法的基本原理和步骤。相关知识点: 试题来源: 解析 答案:K-means聚类算法是一种基于划分的聚类算法,通过迭代将数据划分为K个簇。它的基本原理是通过计算每个数据点到簇中心的距离来确定每个数据点的簇,并不断迭代更新簇中心和簇分配,直到满足收敛条件为止。
描述K-means聚类算法的基本原理,并举例说明其在实际问题中的应用。相关知识点: 试题来源: 解析 答案:K-means聚类算法是一种基于距离的聚类方法,其目标是将数据点划分到K个簇中,使得每个数据点与其所属簇的中心点的距离之和最小。例如,在市场细分中,K-means聚类可以用来将客户根据购买行为划分为不同的群体。
一、k-means聚类算法的基本概念 k-means聚类算法是一种基于划分的聚类方法,它的基本思想是通过迭代计算,将数据集中的样本点划分到k个簇中,使得每个簇内的样本点尽可能相似,而不同簇间的样本点差异明显。这里的“相似”通常是通过计算样本点之间的距离来衡量的。 二、k-means聚类算法的目标函数 k-means聚类算法的...
Kmeans是无监督学习的代表,没有所谓的Y。主要目的是分类,分类的依据就是样本之间的距离。比如要分为K类。步骤是: 随机选取K个点。 计算每个点到K个质心的距离,分成K个簇。 计算K个簇样本的平均值作新的质心 循环2、3 位置不变,距离完成 2. 关于聚类的距离 Kmeans的基本原理是计算距离。一般有三种距离可选...
K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: ...
GMM基本原理 GMM=Gaussian-Mixed-Model 即高斯混合模型,通过多个高斯分布模型的加权组合,我们可以用来拟合任意类型的分布。 GMM是一个非监督模型,与Kmeans、LVQ算法相比,GMM分类结果是一个概率。 图片来源(网页链接) GMM算法 (1) GMM属于生成模型,通过计算联合概率分布,来求解条件概率 p(y|x)=p(x,y)/p(y),...