在kmeans.h中,首先定义一个类,class KMeans,由于本算法实现需要对外部数据进行读取和存储,一次定义了一个容器Vector,其中数据类型为结构体st_point,包含三维点坐标以及一个char型的所属类的ID。其次为函数的声明。 图4.1 程序基本机构与对应函数 在kmeans.cpp中具体给出了不同功能的公有函数,如图_1中所示,函数...
K-means++是一种高效的聚类算法,广泛应用于数据挖掘和机器学习领域。其核心思想是通过迭代优化,将相似的数据点划分为不同的簇。该算法通过迭代优化过程,可以有效地将相似的数据点划分为不同的簇,从而实现数据的自动分类和聚类。 机器学习 算法流程图 聚类算法 人工智能 K-means算法 ...
51CTO博客已为您找到关于kmeans聚类算法流程图的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及kmeans聚类算法流程图问答内容。更多kmeans聚类算法流程图相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
选取K个数据点为聚类中心 开始 无 结束 聚类中心以最小距离聚类 计算数据点之间距离 有 有无元素移动 选定K个聚类中心
k-means算法的核心步骤包括:随机选择k个数据点作为初始的聚类中心;然后,将剩余的每个数据点分配给最近的聚类中心,形成k个聚类;接着,重新计算每个聚类的均值(即新的聚类中心);最后,如果新的聚类中心与旧的聚类中心相同或者变化很小,那么算法收敛,否则,返回第2步。k-means算法简单易实现,但对于初始聚类中心的选择...