图像分割是图像分析和模式识别的首要问题,它在很大程度上决定着图像的最终质量分析和判别分析的结果,半监督聚类是目前机器学习和数据挖掘领域的一个研究热点,吸引了众多学者对该领域进行研究,并取得了一定的研究成果。本文对图像分割方法和半监督聚类方法进行了研究,提出了两种基于半监督聚类的图像分割算法,并通过实验对其...
imshow(label2rgb(result)),title(strcat('K=',num2str(k+2),'时RGB通道分割结果')); 图1.不同簇数情况下图像分割结果 1.聚类和分类 k-means聚类算法是无监督算法,需区分“聚类”与“分类”的差别,作为聚类算法只需知道如何比较不同对象之间的相似度,比如说人可以直观感受到一个事物与另一个事物的相异度,...
对图像进行颜色区域分割.将图像转换到CIE Lab颜色空间,用K均值聚类分析算法对描述颜色的a和b通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE Lab空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域. 2 完整代码 3 仿真结果 4 参考文献 博主简介:擅长...
function[mu,mask]=kmeans(ima,k) %功能:运用k-means算法对图像进行分割 %输入:ima-输入的灰度图像k-分类数 %输出:mu-均值类向量mask-分类后的图像 ima=double(ima); copy=ima; ima=ima(:); mi=min(ima); ima=ima-mi+1; s=length(ima); %计算图像灰度直方图 m=max(ima)+1; h=zeros(1,m); ...
在聚类分割中,kmeans是一种常用的聚类算法。kmeans算法通过将像素分成k个簇来实现图像分割。在kmeans算法中,首先需要随机选择k个像素作为初始聚类中心,然后将每个像素分配到最近的聚类中心。接下来,根据每个聚类中的像素的平均值重新计算聚类中心。然后,重复这个过程,直到聚类中心不再改变或达到预定的迭代次数。
2.0x1.5x1.25x1.0x0.8x 50 跳过片头片尾是|否 恢复默认设置 首页>原创> 【matlab图像代做编程】K means 聚类算法的图像区域分割源码程序 qq-lptjqegmmy 订阅0 分享: 直播热点 下载APP领会员 直播中 小言儿~ 直播中 丽丽感谢家人宠爱 直播中 悠然~
K-means算法在每次迭代中都要考察每个样本的分类是否正确,若不正确,则需要调整。 3.误差平方和准则函数评价聚类性能 三、基于 K-means图像分割 K-means聚类算法简捷,具有很强的搜索力,适合处理数据量大的情况,在数据挖掘 和图像处理领域中得到了广泛的应用。采用K-means进行图像分割,将图像的每个像素点的灰度或者RG...
模式识别经典算法——Kmeans图像聚类分割(以最短的matlab程序实现),程序员大本营,技术文章内容聚合第一站。
【MATLAB图像处理实用案例详解(6)】—— 基于K-means聚类算法的图像区域分割,程序员大本营,技术文章内容聚合第一站。
对图像进行颜色区域分割.将图像转换到CIE Lab颜色空间,用K均值聚类分析算法对描述颜色的a和b通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE Lab空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域. ...