fit_predict方法是K-means算法中的一个重要步骤,它用于完成聚类并生成预测结果。具体步骤如下: 1. 初始化:选择K个中心点作为初始簇的代表。 2. 分配数据点:根据数据点与中心点之间的距离,将每个数据点分配给最近的中心点所代表的簇。 3. 计算新的中心点:根据每个簇中所有数据点的平均值,计算新的中心点。 4...
---> 10 fda_clusters = fda_kmeans.fit_predict(X) ~/miniconda3/envs/pytorch/lib/python3.9/site-packages/skfda/_utils/_sklearn_adapter.py in fit_predict(self, X, y) 157 y: object = None, 158 ) -> NDArrayInt: --> 159 return super().fit_predict(X, y) # type: ignore[no-any...
聚类可以分为特征聚类(Vector Clustering)和图聚类(Graph Clustering)。特征聚类是指根据对象的特征向量...
# 需要导入模块: from sklearn.cluster import MiniBatchKMeans [as 别名]# 或者: from sklearn.cluster.MiniBatchKMeans importfit_predict[as 别名]deftrain_validate(self, X_train, y_train, X_valid, y_valid):""" """nc =10X = [] y = [] clt = MiniBatchKMeans(n_clusters=nc, batch_siz...
km.fit_predict(X)returnkm.labels_ 开发者ID:pkumusic,项目名称:HCE,代码行数:28,代码来源:conceptcat_senna.py 示例2: clustering_by_kmeans ▲点赞 7▼ # 需要导入模块: from sklearn.cluster import KMeans [as 别名]# 或者: from sklearn.cluster.KMeans importfit_predict[as 别名]defclustering_by...
cluster_values = cluster.predict(X) clstr=np.zeros((N,2)) min_dist=1000*np.ones(NZIP) Y_min=np.zeros(NZIP)# clstr contains for each line cluster and cluster distance to centerforiinxrange(N): idx = int(cluster_values[i]) ...
k_means_labels = k_means.labels_#prediction = k_means.predict(user_np)returnk_means_labels 开发者ID:jimdsouza89,项目名称:Entertainment-and-media-analytics,代码行数:29,代码来源:user_profiling.py 示例6: cluster_tfidf ▲点赞 1▼ # 需要导入模块: from sklearn.cluster import MiniBatchKMeans ...
km.partial_fit(X_minibatch)# compute the labeling on the complete datasetlabels = km.predict(X) assert_equal(v_measure_score(true_labels, labels),1.0) 开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:12,代码来源:test_k_means.py ...