KLDivLoss全称为Kullback-Leibler Divergence Loss,中文称为KL散度损失。KL散度是一种测量两个概率分布之间差异的方法。在深度学习中,我们可以利用KL散度来衡量两个概率分布之间的距离。而KLDivLoss则是基于KL散度的一种损失函数。 在分类任务中,我们需要把输入的数据分到不同的类别中。我们可以将每个类别看作一个概率...
NLLLoss,全称为Negative Log Likelihood Loss,是一种最大似然或log似然代价函数,其本质是衡量预测结果与实际观察值之间的差异。CrossEntropyLoss是交叉熵代价函数,其数学形式与NLLLoss相似,常用于多分类问题中评估模型预测概率分布与实际标签分布的差异。KLDivLoss,即Kullback-Leibler divergence Loss,用于...
CrossEntropy函数又称交叉熵损失函数,其实公式表现形式和NLL损失函数一致,但是p、q具体含义不同,这里的p、q是要经过log_softmax的【在pytorch中】 CrossEntropyLoss(p,q)=−∑i=1qilogpiKLDivLoss函数 KLDivLoss是用来判断两个分布的拟合/相似/匹配程度,假设现在有两个概率分布P、Q,它们的KL散度分别为: DKL(...
NLLLoss的全称是Negative Log Likelihood Loss,中文名称是最大似然或者log似然代价函数。 CrossEntropyLoss是交叉熵代价函数。 KLDivLoss是Kullback-Leibler divergence Loss。 NLLLoss 似然函数是什么呢? 似然函数就是我们有一堆观察所得得结果,然后我们用这堆观察结果对模型的参数进行估计。 举个例子,一个硬币,它有θ...
在pytorch中,nn.KLDivLoss()的计算公式如下: 上图y为标签,x为预测值,则pytorch应该以如下代码使用 :(1)、lossfunc=nn.KLDivLoss()(2)、loss = lossfunc(预测值, 标签值) 所以,在pytorch中预测值和标签值分别做如下处理:(1)、F.log_softmax(预测值/ temp, dim=1) (2)、F.softmax(标签值/ temp,...
KLDivLoss 作用: 用于连续分布的距离度量;并且对离散采用的连续输出空间分布进行回归通常很有用;用label_smoothing就采用这个; 公式: 公式理解: p(x)是真实分布,q(x)是拟合分布;实际计算时;通...nn.损失函数 nn.L1Loss https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html#torch.nn.L1Loss ...
CrossEntropyLoss函数,也称为交叉熵损失函数,其公式与NLLLoss类似,但p、q的含义不同。在pytorch中,p、q经过log_softmax处理。公式为:[公式]。KLDivLoss函数用于度量两个分布的拟合、相似或匹配程度。假设两个概率分布P、Q的KL散度分别为:[公式]。KLDivLoss特别适用于连续分布的距离度量,且在对...
KLDivLoss的反向传播计算 在深度学习中,数据、模型、参数、非线性、前向传播预测、反向偏微分参数更新等等,都是该领域的基础内容。究竟他们最基础的都有哪些?什么原理?用python如何实现?都是本节要描述的内容。 sigmoid激活函数 AI检测代码解析 import numpy as npimport matplotlib.pyplot as pltimport h5pyimport ...
torch.nn.KLDivLoss KL散度 KL散度,又叫相对熵,用于衡量两个分布之间的距离。设p(x),q(x)p(x),q(x)是关于随机变量xx的两个分布,则pp相对于qq的KL散度为: 信息论中,熵H(P)H(P)表示对来自PP的随机变量进行编码所需的最小字节数, 而交叉熵H(P,Q)H(P,Q)则表示使用基于QQ的编码对来自PP的变量进...
pytorch中的MSELoss和KLDivLoss 在深度学习中,MSELoss均方差损失和KLDivLossKL散度是经常使用的两种损失,在pytorch中,也有这两个函数,如: loss = nn.MSELoss() input = torch.randn(3, 5, requires_grad=True) target = torch.randn(3, 5) output = loss(input, target) ...