关于torch.nn.Conv2d中的groups参数,表示分输入通道组数。- 对于普通卷积,groups参数默认为1,此时输出的每一个通道包含了输入通道的全部信息。显然此时卷积是比较耗费算力的:the_conv1 = nn.Conv2D(in_channels=6, out_channels=9, kernel_size=1, stride=1, padding='same', groups=1)print(the_conv1.weig...
( input_size + 2*padding - kernel_size ) / stride+1 = output_size 其中,padding指对input的图像边界补充一定数量的像素,目的是为了计算位于图像边界的像素点的卷积响应;kernel_size指卷积核的大小;stride指步长,即卷积核或者pooling窗口的滑动位移。另外需要注意,上面公式建立在所有参数都为整数的假设基础上。
结果1 题目输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为? A. 96 B. $98 C. 95 D. 97 ...
输入图片大小为200×200,依次经过一层卷积(kernelsize5×5,padding1,stride2),pooling(kernelsize3×3,padding0,stride1),又一层卷积(kernelsize3×3,padding1,stride1)之后,输出特征图大小为 A. 95 B. $98 C. 96 D. 97 相关知识点: 试题来源: ...
输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为A.95B.96C.97D.98
输入图像为37×37,经过第一层卷积(卷积核数量为25,每个卷积核大小为5×5,paddding方式为valid,步长为1)和池化层(卷积核大小为3×3,paddding方式为valid,),输出特征图大小为()。 A.10×10 B.11×11 C.12×12 D.13×13 点击查看答案 第2题 假设在卷积神经网络的第一层中有5个卷积核,每个卷积核尺寸...
A.95 B.96 C.97 D.98 查看答案
设输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),一层pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为:__( ) A.99;B.98C.97;D.96; 相关知识点: 试题来源: 解析 C 反馈 收藏 ...
输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为? A. 96 B. 97 C. $98 D. 95 相关知识点: ...