Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=
keras.layers.Conv1D(filters,kernel_size,strides=1,padding='valid',data_format='channels_last',dilation_rate=1,activation=None,use_bias=True,kernel_initializer='glorot_uniform',bias_initializer='zeros',kernel_regularizer=None,bias_regularizer=None,activity_regularizer=None,kernel_constraint=None,bias_c...
Conv1D:1D卷积层(例如时序卷积) keras.layers.Conv1D(filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, act...
kernel_initializer:内核权重矩阵的初始化 bias_initializer:偏置向量初始化 kernel_regularizer:是否将正则化函数应用于内核权重矩阵 bias_regularizer:是否将正则化函数应用于偏置向量 activity_regularizer:Regularizer函数应用于层的输出 kernel_constraint:约束函数应用于核矩阵 bias_constraint:约束函数应用于偏执向量...
2.1Conv1D keras.layers.Conv1D(filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None...
keras.layers.Conv1D(filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_co...
kernel_initializer: Initializer for thekernelweights matrix. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to thekernelweights matrix. bias_regularizer: Regularizer function applied to the bias vector. ...
Conv1D keras.layers.Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_con...
1.1 Conv2D 先看Conv2D的所有参数: tf.keras.layers.Conv2D( filters, kernel_size, strides=(1, 1), padding="valid", data_format=None, dilation_rate=(1, 1), groups=1, activation=None, use_bias=True,kernel_initializer="glorot_uniform", ...
conv_w = state_dict['conv.weight'].permute(2,1,0).numpy() conv_b = state_dict['conv.bias'].numpy() output = tf.keras.layers.Conv1D(filters=conv_w.shape[-1], kernel_size=conv_w.shape[0], padding='same', kernel_initializer= tf.constant_initializer(conv_w), bias_initializer=tf...