核密度估计(kernel density estimation,KDE)是一种非参数方法,用于估计数据的概率密度函数。KDE基于核函数,以一定的带宽参数,通过对每个数据点附近的核函数进行加权平均来估计数据点的概率密度,即根据有限的数据样本对总体进行推断。 核函数通常选择高斯核函数(Gaussian kernel),它是KDE中最常用的核函数之一。高斯核函数...