https://www.kaggle.com/learn/pandas 4. Intro to Machine Learning 3hrs (estimated) · by DanB Learn the core ideas in machine learning, and build your first models. https://www.kaggle.com/learn/intro-to-machine-learning 5. Machine Learning Explainability 4hrs (estimated) · by DanB Extra...
Courses arrow_right_altView all Earn a signed certificate and learn new techniques in our no cost, hands-on courses. Intro to Programming 5 hours to complete Get started with Python, if you have no coding experience. Python 5 hours to complete ...
Kaggle众所周知是从事机器学习和数据分析者的聚集地,今天就让我们迈入这个圣地,揭开它的面纱。 1 kaggle的主页面 kaggle主页面 主页上的菜单栏主要展示了Competitions(竞赛)、Datasets(数据集)、Notebooks(kernel,程序)、Discussion(讨论区)和Courses(相关基础课程)。 这里比较重要的是Competitions(竞赛),我们来看看它! 2...
Kaggle众所周知是从事机器学习和数据分析者的聚集地,今天就让我们迈入这个圣地,揭开它的面纱。 1 kaggle的主页面 kaggle主页面 主页上的菜单栏主要展示了Competitions(竞赛)、Datasets(数据集)、Notebooks(kernel,程序)、Discussion(讨论区)和Courses(相关基础课程)。 这里比较重要的是Competitions(竞赛),我们来看看它! 2...
3."I should do a few more courses and learn advanced Machine Learning concepts before participating in Kaggle competitions, so that I have a better chance of winning." 等我学习所有的理论知识,准备好了,再开始实践”。这是典型的错误心理。 因为没那么多时间让你准备完全,而且也不需要学习所有知识,没...
Kaggle is a crowd-sourced platform for data scientists. It provides a platform for users to find and publish high-quality datasets, explore and build models in a web-based data-science environment, and work with other data scientists and machine learning engineers. ...
Kaggle is a crowd-sourced platform for data scientists. It provides a platform for users to find and publish high-quality datasets, explore and build models in a web-based data-science environment, and work with other data scientists and machine learning engineers. ...
Kaggle is the world’s largest data science community with powerful tools and resources to help you achieve your data science goals.
Intermediate Machine Learning 译作“机器学习中级课程”。 作为“机器学习”系列第二弹,在前作的基础上增加了一些新技能,包括:数据清洗、交叉验证、更强大的模型(XGBoost)等。 1. Introduction 本课程主要内容: 处理现实中的数据(包含:缺失值、类别变量) 设计“流水线”(pipel…阅读全文 赞同5 添加...
We'll start by picking a few variables using our intuition(直觉). Later courses will show you statistical techniques to automatically prioritize(优先) variables. To choose variables/columns, we'll need to see a list of all columns in the dataset. That is done with the columns property of th...