想通过比赛晋级专家,要至少获得两个铜牌,也就是拿前10%的成绩,拿Datasets,Notebooks, Discussions的专家,因为更简单一些,要求就会高一些,它们的牌子主要是靠其他用户的点赞来获取的,点赞越多,越容易拿牌子,这也是kaggle的分享氛围非常好的原因之一,天池就没有这一套系统。 拿了expert,一般对校招生的求职也会有一定的帮助
1:]y_train=dataset.values[0:,0]#forfast evaluationX_train_small=X_train[:10000,:]y_train_small=y_train[:10000]X_test=pd.read_csv("./data/test.csv").values
eval_metric [ default according to objective ] 校验数据所需要的评价指标,不同的目标函数将会有缺省的评价指标(rmse for regression, and error for classification, mean average precision for ranking) 用户可以添加多种评价指标,对于 Python 用户要以 list 传递参数对给...
so we'll always haveinput_shape=[num_columns]. The reason Keras uses a list here is to permit use of more complex datasets. Image data, for instance, might need three dimensions:[height, width
Generative AI|DeepSeek|OpenAI Agent SDK|LLM Applications using Prompt Engineering|DeepSeek from Scratch|Stability.AI|SSM & MAMBA|RAG Systems using LlamaIndex|Building LLMs for Code|Python|Microsoft Excel|Machine Learning|Deep Learning|Mastering Multimodal RAG|Introduction to Transformer Model|Bagging & ...
importxgboostasxgbimportnumpyasnpfromsklearn.model_selectionimportKFold, train_test_split, GridSearchCVfromsklearn.metricsimportconfusion_matrix, mean_squared_errorfromsklearn.datasetsimportload_iris, load_digits, load_bostonrng = np.random.RandomState(31337)# 二分类:混淆矩阵print("数字0和1的二分类问...
from sklearn.datasets import make_blobs from sklearn.model_selection import train_test_split # 构建数据集 X, y = make_blobs(n_samples=100000) # 数据集划分 val_ratio = 0.2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=val_ratio) ...
Prediction Dataset | Kaggle). This dataset has created by combining different datasets already available independently but not combined before. In this dataset, 5 heart datasets are combined over 11 common features which makes it the largest heart disease dataset available so far for research purposes...
https://www.kaggle.com/datasets/palashfendarkar/wa-fnusec-telcocustomerchurnwww.kaggle.com/datasets/palashfendarkar/wa-fnusec-telcocustomerchurn 总体用下来我的感觉依然很震惊,ChatGPT 有着完整的数据分析思路和能力,在处理缺失值时能够根据具体情况进行分析,能够自主挑选并完成建模分析,给出结果建议。
took average prediction for 2019 test data fromEXP_740andEXP_765. Added pseudo label data to train data and retrainEXP_740andEXP_765for 3epoch(EXP_740、EXP_765is the model trained 2015&2019 datasets) Optimizer&Learning rate cycle learning policy ...