Taking everything into consideration, select the best-performing model and provide an analysis of the dataset. Generate appropriate visualizations to support your analysis and, finally, provide recommendations for the next steps for the company. (综合考虑,选择表现最佳的模型并对数据集进行分析。生成适当...
Kaggle is the world’s largest data science community with powerful tools and resources to help you achieve your data science goals.
shuffle=True, batch_size=batch_size, pin_memory=True, num_workers=2, drop_last=True, collate_fn=collator ) dataloaders['val'] = DataLoader( dataset=val_dataset, shuffle=False, batch_size=batch_size, pin_memory=True, num_workers=2, drop_last=False, collate_fn=collator ) return dataloade...
2) Plot the data. Run the next code cell without changes to load a GeoDataFrameworldcontaining country boundaries. #This dataset is provided in GeoPandasworld_filepath = gpd.datasets.get_path('naturalearth_lowres') world=gpd.read_file(world_filepath) world.head() Use theworldandworld_loansG...
我选择用于分析的 EDA 是 lorinc 的 Feature Extraction From Images,selfishgene 的 Visualizing PCA with Leaf Dataset 以及 Jose Alberto 的 Fast Image Exploration。第一步最好先仔细瞧一瞧树叶的图像。selfishgene 检查树叶标本 Jose 绘制出各个种类的树叶,并指出每个种类有 10 张图片。他还观察了同类树叶间的...
EDA-Exploratory Data Analysis 基于使用频率和数值特征 In [14]: 取出和用户的数值型字段信息: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # df_frequency = df[["Customer_Age","Total_Trans_Ct","Total_Trans_Amt","Months_Inactive_12_mon","Credit_Limit","Attrition_Flag"]] 效果同下 df_...
###缺失值处理fordatasetindata_cleaner:#用中位数填充 dataset['Age'].fillna(dataset['Age'].median(),inplace=True)dataset['Embarked'].fillna(dataset['Embarked'].mode()[0],inplace=True)dataset['Fare'].fillna(dataset['Fare'].median(),inplace=True)#删除部分数据 ...
# Initialize a male counter variablemale_count = 0# Initialize variable to store all the ages.ages = []# Loop over the paths and check for male images.for path in image_paths: path_split = path.split("_") if"0"== path_split[1]: ...
基于Kaggle⼼脏病数据集的数据分析和分类预测-StatisticalLearning统。。。基于Kaggle⼼脏病数据集的数据分析和分类预测-StatisticalLearning统计学习实验报告⼀、实验准备 本数据来源于kaggle,包含14个维度,303个样本,具体的变量说明如下表所⽰。变量名详细说明取值范围 target是否患有⼼脏病(分类变量)0=否,1...
for dataset in [train_df]: dataset['Relatives'] = dataset['SibSp'] + dataset['Parch'] axes = sns.factorplot('Relatives','Survived', data=train_df, aspect = 2.5) 有1-3个亲戚在船上,幸存率相对更高。 清洗数据 在11个特征中找出可用的,每一个特征先填充空缺值(如有),并完成分类。 1、年...