它可以与 mlflow 跟踪结合使用,如果使用 LightGBM 作为模型,则代码将非常简单如下所示:import pandas as pdfrom nyaggle.experiment import run_experimentfrom nyaggle.experiment import make_classification_dfINPUT_DIR = '../input'target_column = 'target'X_train = pd.read_csv(f'{INPUT_DIR}/train.c...
For our single stage models, the best classification threshold was around 0.8 with segmentation threshold at 0.4. - loss = (pos_frac*pos*loss/pos_weight + neg_frac*neg*loss/neg_weight).sum() In your original loss function, pos_frac = 0.25 and neg_frac = 0.75. I modified it so that ...
PyCaret支持的模型比较多,项目也比较活跃,但对模型的可视化做的不够。 frompycaret.classificationimport* fromcategory_encoders.cat_boostimportCatBoostEncoder cat_train_df=train_df.copy() cat_test_df=test_df.copy() ce=CatBoostEncoder() cols_to_encode=['name','sex','ticket','cabin'...
bestmodel5=gridsearch.best_estimator_ bestmodel5.score(X_train,Y_train) 0.942215088282504 Y_pre=bestmodel6.predict(X_test) print(metrics.classification_report(Y_test,Y_pre)) precision recall f1-score support 0 0.86 0.86 0.86 168 1 0.77 0.76 0.76 100 accuracy 0.82 268 macro avg 0.81 0.81 0...
Step 1:将有标签部分数据分为两份:训练集和测试集,并训练出最优的model1 Step 2:用训练好的model 1对一批未标记图像(测试集)进行预测,选择大于预测阈值的标签作为伪标签 Step 3:最后将有标签的数据(训练集)和伪标签的数据(测试集)一起进行finetune model 1,通过验证集选取best model。总损失是有标记和无标...
#单变量选取:对于regression问题,使用f_regression指标;对于classification问题,可以使用chi2或者f_classif指标。取值必须是非负数。 Kbest = SelectKBest(score_func=chi2, k=10) fit = Kbest.fit(X_train, Y_train) scores = pd.DataFrame({'Columns': X_test.columns.values, 'Score': fit.scores_}) ...
Classification.from_pretrained(model_checkpoint_base, num_labels=2) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") early_stopping = EarlyStoppingCallback(early_stopping_patience=5) num_train_epochs=10.0 metric_name = "roc_auc" model_name = "distilroberta" batch_...
一般就是regression,classification, timeseries这几类。 kaggle的问题一般解决过程: 拿到数据之后,第一步就是data exploration. 这一步就是各种画图,找规律,找灵感,找可能的feature. 会R的可以shiny app做一些UI来辅助自己对数据的理解。 然是后选strategy, 从经典的机器学习算法中,选择自己要用的模型。一般这个大家...
from sklearn.model_selection import train_test_split # 构建数据集 X, y = make_classification(n_samples=1000, weights=[0.95], flip_y=0, random_state=1) print(Counter(y)) # 训练集验证集划分 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.50, random_state...
很多数据的特质都是要真正动手做进去才能发现其中的奥妙,针对这些特质设计的一些Feature或者Model,往往都...