sklearn.cluster.KMeans(n_clusters=8,init='k-means++',n_init=10,max_iter=300,tol=0.0001,precompute_distances='auto',verbose=0,random_state=None,copy_x=True,n_jobs=1,algorithm='auto') 参数的意义: n_clusters:簇的个数,即你想聚成几类 init: 初始簇中心的获取方法 n_init: 获取初始簇中心...
# Python脚本# 导入需要的库importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearn.metricsimportpairwise_distances_argminfromsklearn.datasetsimportload_sample_imagefromsklearn.utilsimportshuffle# 导入数据,探索数据china=load_sample_image("china.jpg")chinachina.dtypechina.shapechi...
4. Sklearn代码解读之k-means聚类算法 1. 聚类任务 “无监督学习”(unsupervised learning)可以对无标记数据进行训练获取其内在性质及规律,为进一步的数据分析提供基础,其中聚类(clustering)是最常用、应用最广的任务。聚类是一种将划分类别未知的数据集自动形成簇结构的方法,聚类既能作为一个单独过程用于寻找数据内在的...
from sklearn.datasets.samples_generatorimportmake_blobs #X为样本特征,Y为样本簇类别, 共1000个样本,每个样本4个特征,共4个簇,簇中心在[-1,-1],[0,0],[1,1],[2,2], 簇方差分别为[0.4,0.2,0.2]X,y=make_blobs(n_samples=1000,n_features=2,centers=[[-1,-1],[0,0],[1,1],[2,2]],...
sklearn中的KMeans算法 1、聚类算法又叫做“无监督分类”,其目的是将数据划分成有意义或有用的组(或簇)。这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。 2、KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的...
sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=None, cluster_std=1.0, center_box=(-10.0,10.0), shuffle=True, random_state=None)#参数解释:1.n_samples(int/array):如果参数为int,代表总样本数;如果参数array,数组中每个数代表样本数,默认值1002.n_features(int):样本点的维度,默...
6.Sklearn实现K-Means算法 我们经常需要通过改变参数来让模型达到聚类结果,具体参数设置可参考sklearn官方教程。 代码语言:javascript 代码运行次数:0 复制 Cloud Studio代码运行 from sklearn.clusterimportKMeans from sklearn.datasetsimportload_irisimportmatplotlib.pyplotasplt ...
K-Means聚类讲解:算法和Sklearn的实现(附代码)K-Means聚类是机器学习领域中最强大的聚类算法之一。他的原因比较简单,但得出的结果也非常准确。聚类是理解数据集的非常重要的方式,因此在本文中,我们将讨论什么是聚类,为什么需要聚类以及什么是k-means聚类。什么是聚类 聚类是根据数据的属性将数据分为两个或更多组...
在Python的sklearn库中,KMeans算法被封装在KMeans类中。使用KMeans进行聚类分析时,需要关注以下几个关键参数: n_clusters:整数,指定要形成的聚类数目。 init:字符串或ndarray,指定初始质心。默认为’k-means++’,表示使用k-means++算法进行初始化。 n_init:整数,指定用不同的质心初始化方法运行算法的次数。默认为...
[sklearn]聚类:K-Means算法/层次聚类/密度聚类/聚类评估 聚类(Clustering)简单来说就是一种分组方法,将一类事物中具有相似性的个体分为一类,将另一部分比较相近的个体分为另一类。例如人和猿都是灵长目动物,但是根据染色体数目不同可以将人和猿分类不同的两类。虽然人根据肤色又可以分为黄种人,白种人,有色种人...