使用K-prototype聚类方法解决实际问题时,分析步骤和前面K-means聚类的相同,第一步是准备数据,可同时依据定量和定类数据进行聚类,定量数据应当进行标准化处理;第二步是确定K值,可专业经验指定或多个K值遍历对比决定;第三步是认识类;第四步是归纳总结和分析类的特征,此处不再赘述。 3. K-prototype聚类实例分析 【例
将数据使用算法分成4个类别后可以看到 每个类别之间分布呈不同的簇,交集较少 ,因此可以认为得到的聚类结果较好。 删除相关性变量 删除相关性变量 在进行聚类分析之前,我们需要删除相关性较高的变量。高相关性的变量可能会导致冗余的信息,并且可能会对聚类结果产生负面影响。通过计算变量之间的相关系数,并选择相关系数较...
将数据使用算法分成4个类别后可以看到 每个类别之间分布呈不同的簇,交集较少 ,因此可以认为得到的聚类结果较好。 删除相关性变量 删除相关性变量 在进行聚类分析之前,我们需要删除相关性较高的变量。高相关性的变量可能会导致冗余的信息,并且可能会对聚类结果产生负面影响。通过计算变量之间的相关系数,并选择相关系数较...
将数据使用算法分成4个类别后可以看到 每个类别之间分布呈不同的簇,交集较少 ,因此可以认为得到的聚类结果较好。 删除相关性变量 删除相关性变量 在进行聚类分析之前,我们需要删除相关性较高的变量。高相关性的变量可能会导致冗余的信息,并且可能会对聚类结果产生负面影响。通过计算变量之间的相关系数,并选择相关系数较...
本文的研究目的是基于R语言的k-prototype算法,帮助客户对新能源汽车行业上市公司进行混合型数据集的聚类分析。 通过对公司的财务数据、市场表现和发展战略等多个方面的变量进行聚类分析,我们可以将这些公司划分为不同的类别,并分析不同类别的特点和发展趋势。
聚类分析之k-prototype算法解析 K-prototype是处理混合属性聚类的典型算法。继承Kmean算法和Kmode算法的思想。并且加入了描述数据簇的原型和混合属性数据之间的相异度计算公式。 常规定义:X={X1,X2,X3………Xn}表示数据集(含有n个数据),其中数据有m个属性。
聚类分析之k-prototype算法解析 K-prototype是处理混合属性聚类的典型算法。继承Kmean算法和Kmode算法的思想。并且加⼊了描述数据簇的原型和混合属性数据之间的相异度计算公式。常规定义:X={X1,X2,X3………Xn}表⽰数据集(含有n个数据),其中数据有m个属性。数据Xi={X11,X12,X13……….X1m} Aj表⽰...
k-prototype聚类是一种用于处理同时包含数值型和分类型数据的聚类方法。它是k-means和k-modes聚类的结合,能够处理混合类型的数据集。k-prototype聚类通过定义一个损失函数来度量样本与聚类中心之间的距离,从而将数据点分配到最近的聚类中心。 k-prototype聚类分析的步骤 初始化聚类中心:从数据集中随机选择k个数据点作为...
本文基于K-prototype聚类算法,以宣城职业技术学院学生相关校园消费行为数据为切入点,探究职业院校学生消费行为与学生主体的交互影响,建立了四类学生校园消费行为类别,分析不同类别学生群体的基本情况、学习情况、身心健康情况的具体特征及相关性。研...
1 k-prototypes聚类 https://github.com/nicodv/kmodes.git 1 k-prototypes算法 K-prototype是K-means与K-modes的一种集合形式,适用于数值类型与字符类型集合的混合型数据。 k-prototypes算法在聚类的过程中,是将数据的数值型变量和类别型变量拆开,分开计算样本间变量的距离,再将两者相加,视为样本间的距离。