2.K-Means聚类算法的缺点包括:需预先设定K值:K值需要在聚类前确定,且结果对此敏感。对异常值敏感:异常值和噪声可能会对聚类结果产生较大影响。可能收敛到局部最小值:算法可能会收敛到局部最小值,而不是全局最小值,这取决于初始中心的选择。假设聚类为凸形状和相似大小:对于非球形或大小差异很大的聚类,性能可能会...
主要需要调参的参数仅仅是簇数k。 缺点: K值的选取不好把握。 对于不是凸的数据集比较难收敛。 如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐含类别的方差不同,则聚类效果不佳。 采用迭代方法,得到的结果只是局部最优。 对噪音和异常点比较敏感。0 0 发表评论 发表 作者最近动态 亚历山大...
主要缺点 K值选择困难:K值(即簇的数量)需要事先指定,而选择合适的K值往往是一个难题。 对初始质心敏感:K-means算法的结果可能受到初始质心选择的影响,不同的初始质心可能导致不同的聚类结果。 只能发现球形簇:K-means算法假设簇是球形的,对于非球形簇的数据集,其聚类效果可能不佳。 对异常值敏感:K-means算法对异...
尽管k-means聚类算法有许多优点,但也存在一些缺点。首先,k-means对初始聚类中心点的选择较为敏感,不同的初始点可能导致不同的聚类结果。其次,k-means对数据集的分布要求较高,对异常值和噪声敏感,容易受到极端值的影响。此外,k-means要求将每个数据点都分配到一个簇中,导致结果可能不够灵活,对于非凸形状的簇识别...
K-means算法的缺点: K值选择困难:K-means算法中的K值需要事先确定,而如何选择合适的K值是一个具有挑战性的问题。K值的选择会直接影响到聚类的结果,不同的K值可能会导致完全不同的聚类效果。 对初始值敏感:K-means算法对初始聚类中心的选择非常敏感,不同的初始值可能会导致不同的聚类结果。这意味着算法的稳定性较...
K-means 是我们最常用的基于欧式距离的聚类算法,其认为两个目标的距离越近,相似度越大。 1. 算法 1.1. 算法步骤 1.2. 复杂度 2. 优缺点 优点: 容易理解,聚类效果不错,虽然是局部最优, 但往往局部最优就够了; 处理大数据集的时候,该算法可以保证较好的伸缩性; ...
优缺点 K-Means 原理 K-Means是一种基于划分的聚类算法,旨在将数据集划分为k个簇(k为超参数,需要事先指定),使得每个簇内的数据点尽可能接近。算法通过迭代优化以下目标函数来实现聚类:min∑1k∑x∈cidistance(x,μi),其中,ci表示第i个簇,μi表示第i个簇的质心 ...
缺点: 初始值敏感性:K-means算法的聚类结果受初始质心的选择影响较大。不同的初始质心可能导致完全不同的聚类结果,因此需要一定的经验或多次运行算法来获取最佳结果。 对异常值和噪声敏感:由于K-means算法基于欧氏距离度量,对异常值和噪声数据点比较敏感。这些异常值可能会导致簇的形状和大小发生变化,影响聚类结果的准...
聚类概念 聚类分析是在对象数据中发现对象之间关系。一般来说,组内相似性越高,组间相似性越大,则聚类的效果越好。 k-means概念 k-means是一种无监督学习,它会将相似的对象归到同一类中。 k-means聚类的优缺点 优点:容易实现。 缺点:可能会收敛到局部最小值, 当应用到大规模数据集时会收敛较慢。
而不同子集间的元素差异性最大[1],这就是(空间)聚类算法的本质。而K-Means正是这样一种算法的...