k-means算法是将样本聚类成 k个簇(cluster),其中k是用户给定的,其求解过程非常直观简单,具体算法描述如下: 1) 随机选取 k个聚类质心点 2) 重复下面过程直到收敛 { 对于每一个样例 i,计算其应该属于的类: 对于每一个类 j,重新计算该类的质心: } 其伪代码如下: *** 创建k个点作为初始的质心点(随机选择)...
介绍了k-means++聚类算法的原理和一个python实现k-means++聚类算法案例,希望对大家有所帮助,代码放在评论区,欢迎大家在评论区提出问题讨论。
k-means算法是将样本聚类成 k个簇(cluster),其中k是用户给定的,其求解过程非常直观简单,具体算法描述如下: 1) 随机选取 k个聚类质心点 2) 重复下面过程直到收敛 { 对于每一个样例 i,计算其应该属于的类: 对于每一个类 j,重新计算该类的质心: } 其伪代码如下: *** 创建k个点作为初始的质心点(随机选择)...
中心点的距离34centroids =createCent(dataSet, k)35clusterChanged = True#用来判断聚类是否已经收敛36whileclusterChanged:37clusterChanged =False;38foriinrange(m):#把每一个数据点划分到离它最近的中心点39minDist = inf; minIndex = -1;40forjinrange(k):41distJI =distMeans(centroids[j,:], dataSet[...