这时候,SSE的变化趋势就会呈现出一个类似于手肘的形状,因此被称为肘部法则。 如何应用肘部法则? 应用肘部法则的过程可以分为以下几个步骤: 1. 计算不同聚类数k下的SSE值 首先,需要确定聚类数k的范围,一般来说,k的取值范围为1到数据集中样本数量的一半。然后,对于每个k值,都需要进行一次Kmeans聚类,并计算其SSE...
基于python的k-means聚类分析算法,对文本、数据等进行聚类,有轮廓系数和手肘法检验 K-means算法是一种常见的聚类算法,用于将数据点分成不同的组(簇),使同一组内的数据点彼此相似,不同组之间的数据点相对较远。以下是K-means算法的基本工作原理和步骤: 工作原理: 初始化:选择K个初始聚类中心点(质心)。 分...
我们对预处理后数据.csv 中的数据利用手肘法选取最佳聚类数k。具体做法是让k从1开始取值直到取到你认为合适的上限(一般来说这个上限不会太大,这里我们选取上限为8),对每一个k值进行聚类并且记下对于的SSE,然后画出k和SSE的关系图(毫无疑问是手肘形),最后选取肘部对应的k作为我们的最佳聚类数。python实现如下: i...
我们对预处理后数据.csv 中的数据利用手肘法选取最佳聚类数k。具体做法是让k从1开始取值直到取到你认为合适的上限(一般来说这个上限不会太大,这里我们选取上限为8),对每一个k值进行聚类并且记下对于的SSE,然后画出k和SSE的关系图(毫无疑问是手肘形),最后选取肘部对应的k作为我们的最佳聚类数。python实现如下: i...
「肘部法(手肘法)认为图3的拐点就是k的最佳值」手肘法核心思想:随着聚类数k的增大,样本划分会更加精细,每个簇的聚合程度会逐渐提高,那么Inertia自然会逐渐变小。当k小于真实聚类数时,由于k的增大会大幅增加每个簇的聚合程度,故Inertia的下降幅度会很大,而当k到达真实聚类数时,再增加k所得到的聚合程度回报...
1. 手肘法(Elbow Method) 手肘法是一种基于聚类误差平方和(SSE)的评估指标的k值确定方法。该方法通过计算不同k值下的SSE,并绘制SSE与k值的折线图。当k值增加时,SSE会逐渐减小,但随着k值增加,SSE的下降速度会逐渐变缓。当k值达到一定程度后,SSE的下降速度会突然变缓,形成一个拐点。这个拐点所对应的k值被认为是...
①手肘法 手肘法的核心指标是SSE(sum of the squared errors,误差平方和), 其中,Ci是第i个簇,p是Ci中的样本点,mi是Ci的质心(Ci中所有样本的均值),SSE是所有样本的聚类误差,代表了聚类效果的好坏。 手肘法的核心思想是:随着聚类数k的增大,样本划分会更加精细,每个簇的聚合程度会逐渐提高,那么误差平方和SSE自...
由上图可知,K 从 1 到 2, 从 2 到 3 的过程中,离差平方和减少的都相当明显,而 K 从 3 到 4,乃至 4 以后,离差平方和减少的都很有限,所以最佳的 K 值应该为 3(与仿真数据集的参数对对应)。由于上图看上去很像一只手肘,理论上最佳的 K 值在肘处取得,故而得名。
plt.title(u'用肘部法确定最佳的K值', fontproperties=font) plt.show() 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 从图中可以看出图片像一只手肘,肘处的K即为最佳K值:K=2...
kmeans划分k个簇,不同k的情况,算法的效果可能差异就很大。K值的确定常用:先验法、手肘法等方法。 先验法 先验比较简单,就是凭借着业务知识确定k的取值。比如对于iris花数据集,我们大概知道有三种类别,可以按照k=3做聚类验证。从下图可看出,对比聚类预测与实际的iris种类是比较一致的。